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Nederlandse samenvatting

De zuivelindustrie is de op één na grootste landbouwsector in Europa en ver-
tegenwoordigt meer dan 12% van de totale landbouwproductie. Toch staat de
zuivelindustrie momenteel voor een aantal uitdagingen. Ten eerste is de consument
steeds meer begaan met de veiligheid, de diervriendelijkheid en de duurzaamheid
van de productie van zuivelproducten. Ten tweede leidt een toename van de globale
vraag naar zuivelproducten tot een stijging in het gebruik van grondstoffen en
een enorme uitstoot van broeikasgassen. Ten derde vormt de klimaatverandering
een grote bedreiging voor de veehouderij omdat het de kwaliteit van voederge-
wassen, de beschikbaarheid van water, de productiviteit van dieren, dierziekten
en de biodiversiteit in het gedrang brengt. Gedreven door de noodzaak om zowel
te kunnen voldoen aan de toenemende vraag naar duurzame producten alsook de
uitstoot van broeikasgassen te verminderen, schakelt de zuivelindustrie over naar
een meer duurzame aanpak van landbouw. Precision Livestock Farming (PLF)
is een reeks geavanceerde technologieën gericht op het automatisch en real-time
monitoren van dierenwelzijn, gezondheid, milieu en productie. Bijgevolg wordt
het gebruik van deze technologieën aanzien als één van de voornaamste oplossin-
gen voor het realiseren van de overgang naar een meer robuuste en veerkrachtige
landbouw. Tot op heden worden er reeds verscheidene monitoringsystemen die
gebruik maken van PLF technologieën gecommercialiseerd en geı̈mplementeerd op
melkveebedrijven. Door de voortdurende toename van de omvang van de veestapel
en de snelle ontwikkeling van PLF technologieën worden melkveehouders echter
geconfronteerd met een exponentiële groei van het volume, de verscheidenheid en
de complexiteit van de verzamelde data. In deze situatie neemt de performantie
van huidige monitoringsystemen snel af, waardoor ze onbruikbaar worden voor
praktische toepassingen. Het gebruik van meer geavanceerde algoritmes die wel in
staat zijn om te leren van complexe datasets wordt daarom steeds belangrijker in de
zuivelindustrie. Het doel van dit proefschrift is om in deze behoefte te voorzien door
dierenmonitoringsystemen te ontwikkelen op basis van deep learning algoritmen
die geschikt zijn voor praktische doeleinden. In Hoofdstuk 2 is een deep learning
raamwerk ontwikkeld om alle ontbrekende melkgiftes van een lactatiecurve van
een koe te schatten. We onderzoeken of een melkgifte nauwkeurig bepaald kan
worden aan de hand van alle informatie waargenomen in de lactatiecyclus, onge-
acht de hoeveelheid waargenomen data, het tijdstip van de waargenomen data en
de tijdsintervallen tussen de waargenomen data. De resultaten tonen aan dat dit
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raamwerk gebruikt kan worden voor zowel het interpoleren als het voorspellen van
ontbrekende melkgiften. Bovendien tonen we aan dat het toevoegen van informatie
rond de veestapel, de pariteit, de gezondheid en de vruchtbaarheid van de koe leidt
tot meer nauwkeurige voorspellingen. De methodologie voorgesteld in deze studie
kan het monitoren van dieren aanzienlijk verbeteren, aangezien het onverwachte
dalingen in melkproductie en dus ziekten snel kan opsporen en de impact van de
gezondheidstoestand op de productiviteit kan inschatten. In Hoofdstuk 3 stellen
we een methode voor die de volledige melkcurve van een bepaalde lactatiecyclus
voorspelt. De melkcurve wordt voorspeld aan de hand van alle waargenomen
informatie in de voorgaande cyclus zoals melkgifte-, pariteit-, veestapel- en gezond-
heidsinformatie. Deze methodologie stelt veehouders in staat om de werkelijke
melkgifte van een koe te vergelijken met haar verwachte melkgifte over het ge-
hele verloop van de lactatiecyclus. Dit kan het monitoren van koeien in het eerste
stadium van de lactatie aanzienlijk vergemakkelijken. In Hoofdstuk 4 wordt een
deep learning model voorgesteld dat het moment van afkalven voorspelt. We onder-
zoeken of sensorgegevens over verschillende gedragingen zoals eten, herkauwen,
liggen en staan gebruikt kunnen worden om het moment van afkalving automatisch
te voorspellen. Verder gaan we na of intelligente imputatiestrategieën ontwikkeld
kunnen worden om deze voorspellingsmodellen geschikt te maken voor praktische
toepassingen. De methode voorgesteld in dit hoofdstuk stelt boeren in staat om
tijdig hulp te verlenen bij het afkalven en hun afkalfmanagement te optimaliseren.



English summary

The dairy industry is the second biggest agricultural sector in Europe, representing
more than 12% of the total agricultural output. Nevertheless, the dairy industry
currently faces many challenges. First, consumers are increasingly more concerned
about the safety, animal friendliness and sustainability of the production of dairy
products. Second, the increasing global demand also leads to a high use of natural
resources and large emission of greenhouse gasses. Third, global warming is a
major threat to the livestock sector as it compromises the quality of feed crop, water
availability, animal productivity, animal diseases and biodiversity. Driven by a need
to meet the increasing demand in sustainable products and reduce emission gasses,
the dairy sector is transitioning towards a more sustainable approach of agriculture.
Precision Livestock Farming (PLF) is a set of advanced technologies aimed at
automatic, real-time monitoring of animal welfare, health, environmental impact,
and production. These technologies have, therefore, been proposed to transition
towards a more robust and resilient agriculture. To date, many monitoring systems
supported by PLF are already being commercialized and deployed on dairy farms.
However, due to an ongoing increase in herd size as well as the rapid development
of PLF technologies, dairy farmers are faced with an exponential growth of the
volume, variety and complexity of the data they collect. In these situations, the
performance of current monitoring systems tend to drop rapidly, making them
unusable for practical applications. More advanced algorithms that are able to
learn from such complex datasets are therefore becoming increasingly important
in the dairy industry. The objective of this dissertation is to address this need by
developing animal monitoring systems based on deep learning algorithms that are
suitable for practical implementations. In Chapter 2, a deep learning framework
is developed to infer all missing milk yields along the lactation curve of a dairy
cow. In particular, we investigate whether milk yield can be accurately inferred by
using all the observed information in the lactation cycle, regardless of the amount
of data, the recording time of the data and the time interval between the data.
Results show that this framework can be used to accurately interpolate as well as
predict missing milk yields. In addition, we find that adding information on herd,
parity and health and reproduction events improve the predictions. The framework
facilitates animal monitoring as it allows to rapidly detect unexpected milk losses
and therefore diseases and to assess the impact of health and reproduction events
on the cow’s productivity. In Chapter 3, we propose a framework that predicts the
entire milk yield curve of the subsequent lactation cycle. The milk yield curve is
generated by using all the observed information in the preceding cycle, including
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milk, parity, herd and health information. This forecasting methodology allows
farmers to compare a cow’s actual and expected milk yield over the entire course
of the lactation cycle which facilitates animal monitoring in early lactation. In
Chapter 4, we present a deep learning model that predicts the moment of calving.
In particular, we analyze whether sensor data on behavioral activities such as eating,
ruminating, lying and standing can be used to automatically detect the moment of
parturition. Furthermore, we investigate whether smart imputation strategies can
be used to make calving prediction models suitable for practical applications. The
proposed methodology allows farmers to provide timely assistance and optimize
their calving management.



1
Introduction

1.1 The dairy industry

The importance of the dairy industry in the EU is undeniable, as it represents more
than 12% of the total agricultural output (Laure and Granier, 2018). In fact, with a
total milk production of 160.1 million tonnes in 2020, the dairy sector is the second
biggest agricultural sector in the EU (Eurostat, 2022). This is unlikely to change in
the near future, as a global increase in dairy consumption is expected in the coming
years, which in turn is driven by growth in population and income (OECD et al.,
2020). Along with this increase in demand, consumers are more concerned with the
sustainability, safety and animal-friendliness of their food production (Werkheiser,
2018). Simultaneously, the livestock sector is facing increasing pressure as it
contributes to approximately 14.5% of the global emission of greenhouse gasses,
driving global warming (Cheng et al., 2022). Climate change in turn is a major threat
for livestock production as it impacts the quality of feed crop and forage, water
availability, animal and milk production, livestock diseases, animal reproduction,
and biodiversity (Rojas-Downing et al., 2017). As a result, the dairy industry needs
to meet an increase in demand for dairy products while reducing the number of
milking cows. Hence, driven by a need to increase the sustainability of production
systems and decrease livestock emissions, farming is transitioning towards a more
resilient approach of agriculture (Lovarelli et al., 2020). Resilient animals can
be considered as animals that avoid early culling by coping well with the farm’s
management conditions. These animals reproduce easily, produce consistently, and



2 CHAPTER 1. INTRODUCTION

react well to imposed challenges and (physiological) stress (Adriaens et al., 2020).
During this transition towards a more resilient livestock farming, it is fundamental
that many aspects such as productivity, environmental impact and animal welfare
are monitored vigorously.

Precision Livestock Farming (PLF) represents a set of advanced technologies
that allow for automatic and real-time monitoring of production, reproduction,
health and welfare of livestock and environmental impact (Norton and Berckmans,
2017). In previous research, it has been widely recognized that the development of
PLF technologies is essential for more robust and resilient dairy production systems
(Lindblom et al., 2017). In particular, animal monitoring systems based on PLF
technologies enable farmers to improve animal welfare and produce food safely
with a reduced environmental impact through the early warning of illness, higher
reproductive performance, genetic improvement, more efficient use of nutrients and
the reduction of emissions (Lindblom et al., 2017). As a result, PLF technologies
have been proposed by the agricultural European Innovation Partnership (EIP-
AGRI) to transition towards a more sustainable agriculture (Laure and Granier,
2018). To date, several countries are already investing in smart farming approaches
(Rose and Chilvers, 2018). Indeed, PLF technologies such as cameras, microphones
and advanced sensor technologies that alert farmers via connected devices (e.g.
phones or computers) about production details and behavioral activities are now
being used to monitor cattle (Berckmans, 2017).

Although these technologies are already commercialized and being deployed
on farms, many challenges still remain. In particular, to improve the efficiency of
production systems, it is essential for smart farming approaches to collect, process
and analyze the data correctly (Garcı́a et al., 2020). To date, most animal moni-
toring systems still rely on traditional machine learning models such as k-nearest
neighbors, random forest, support vector machines and logistic regression models
to analyze the PLF data (Garcı́a et al., 2020). Due to the rapid development and
adoption of these PLF technologies in the dairy industry, however, the volume,
variety, velocity, and complexity of the data rapidly increases. Milk meters, for
example, record milk yield on a daily basis. Accelerometers and pedometers con-
tinuously measure lying, standing, eating and ruminating behavior. Video cameras
record live video footage from cows and temperature loggers continuously track the
body temperature. As a result, dairy farmers now collect multidimensional datasets,
involving complex interdependencies between interacting variables measured over
time (Rosa, 2021). Furthermore, the collection of complete farm data may be
challenging. Lactation cycles may be incomplete due to defective milkmeters,
disease, animal treatment, discarded milk, culled or deceased cows and variable
milk recording schemes across herds. Data on health and reproduction events may
be incorrect due to human error. Sensor data on behavioral activities may contain
missing values due to faulty transmission of data, malfunction of sensors and animal
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treatment. Therefore, the need for more advanced algorithms that are able to learn
from such complex datasets increases in the dairy industry. The objective of this
dissertation is to explore frameworks based on deep learning algorithms to improve
current animal monitoring systems.

1.2 AI for animal monitoring

1.2.1 A short introduction to machine learning and deep
learning

Before delving into the notion of using Artificial Intelligence (AI) to support
animal monitoring in the dairy industry, let us start by introducing the fundamentals
and motivating the use of AI, machine learning and deep learning. AI is a very
broad field of computer science in which computers are learned to mimic human
behavior. Machine learning is a branch of AI that aims to develop algorithms
to automatically learn patterns from data without being explicitly programmed
(Bishop and Nasrabadi, 2006). The procedure of learning from data is called model
training, as the model is trained to improve its performance on extracting patterns
from the data. Once a machine learning model has been trained with sufficient
accuracy, it can leverage the uncovered patterns in the data to make predictions
on future data and support decision-making under uncertainty (Murphy, 2012). In
general, machine learning models can be broadly categorized in two different types
of problems:

• Supervised Learning: machine learning task that learns to map a relationship
between input data or features and output data or labels. An example of
supervised learning is detecting crop disease based on the image of the crop.

• Unsupervised Learning: machine learning task that learns to discover inter-
esting patterns from the input data without experiencing labels. Clustering
dairy cows based on their milking characteristics for breeding purposes is an
example of an unsupervised learning problem.

Many AI tasks can be solved by manually designing the right set of features for
that task, and passing these features to a machine learning algorithm. For example,
a useful set of features to predict the total milk yield of a cow comprises the breed,
the parity, the birth weight and the season of calving. In the last decade, however,
manual feature engineering became much more challenging, as datasets became
much larger and more unstructured, and tasks became increasingly more complex,
e.g. identifying and spraying weeds based on live video footage of drones to reduce
the use of crop protection chemicals. Deep learning is a subset of machine learning
that can solve more complex problems by automatically learning the features from
the data. It does this by representing the task as a hierarchy of concepts, whereby
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each concept is expressed in terms of other, more simple concepts (Goodfellow
et al., 2016). With recent advancements in computer technologies and algorithmic
techniques, deep learning methods have led to major breakthroughs in various
research domains such as speech recognition (Graves et al., 2013), machine transla-
tion (Bahdanau et al., 2016), object classification (He et al., 2015) object detection
(Redmon et al., 2016) and image generation (Goodfellow et al., 2014).

In the dairy industry, most animal monitoring systems are still based on tra-
ditional machine learning models. Due to the ongoing modernization and digital-
ization of the dairy industry, however, enormous amounts of heterogeneous data
are continuously collected by various PLF technologies. Therefore, the need for
algorithms that can learn from more complex data increases in the dairy industry.

1.2.2 Predicting the milk yield

Accurately predicting the milk yield is one of the most valuable assets for a dairy
farmer as it enables more efficient herd management. In particular, predicting
milk yields allows for better financial planning as dairy farmers can obtain timely
projections of their future production as well as costs such as required feed intake,
proteins and nutrients as well as energy consumption and plant utilization (Murphy
et al., 2014). Lactation models can be used for revenue optimization as they
quantify the effect of various factors such as breeding, calving, feeding and culling
decisions on the milk production (Ehrlich, 2010; Lormore and Galligan, 2001).
Additionally, predicting a cow’s productivity can support breeding and culling
decisions. For breeding purposes, lactation models facilitate early identification
of the most productive females as well as superior bulls based on the analysis of
the total productivity of its offspring (Kliś et al., 2021; Lacroix et al., 1995). On
the other hand, accurate forecasts of a cow’s productivity contributes to improved
culling decisions (Njubi et al., 2010). Furthermore, predicting the expected milk
yield allows farmers to identify unforeseen milk losses and gain insights in health-
related problems (Jensen et al., 2018). For example, monitoring systems can
automatically alert farmers when a cow’s realized milk yield deviates much from
the expected lactation curve. This can help to rapidly detect diseases such as
mastitis (Adriaens et al., 2018; Wilson et al., 2004), metritis (Giuliodori et al., 2013;
Wittrock et al., 2011) and ketosis (McArt et al., 2012) and, therefore, reduce costs
associated with these diseases which include lower production, discarded milk
because of antibiotic therapy, labor, veterinary costs and treatments, and culling or
death (Wilson et al., 2004). At the same time, deviations between the expected and
observed milk yield also provide dairy farmers valuable feedback on the recovery
and cure of the animal (Adriaens et al., 2018).

In early research, lactation curves were modeled by parametric functions fitted
on empirical data. Probably the most popular parametric lactation model is the
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Wood incomplete gamma function which is characterized by an increasing phase
until a peak yield, followed by a more steady decline (Wood, 1967). Several
modifications to the Wood model were proposed to fit a wider range of possible
shapes, e.g. a combination of an exponential and linear model (Wilmink, 1987),
a polynomial regression model (Ali and Schaeffer, 1987), a Legendre polynomial
(Kirkpatrick et al., 1994) and an exponential model (Ehrlich et al., 2011). An
overview of the available parametric lactation models are given in Bouallegue and
M’Hamdi (2020). The main purpose of these empirical models was to describe
the lactation traits of homogeneous groups of animals for management purposes
such as breeding decisions (Macciotta et al., 2011). Later, due to developments in
PLF technologies and an increasing need for individual animal monitoring, several
models have been proposed to predict individual lactation (Macciotta et al., 2011).
Vasconcelos et al. (2004) and Macciotta et al. (2002) employed autoregressive (AR)
models to predict a daily yield based on a limited number of preceding yields. In
the study presented by Grzesiak et al. (2006), a framework was developed to predict
a milk yield on a given day by a multilayer perceptron (MLP) network. In addition
to predicting daily yields, many models have also been developed to predict a cow’s
305d cumulative milk yield (Grzesiak et al., 2003a,b; Njubi et al., 2010; Sharma
et al., 2007).

Although many lactation models have already been suggested by different
authors, some problems still remain. First, a fixed number of test-day milk yields
measured at fixed time intervals is required by most of the previously proposed
models. In reality, however, missing milk recordings and variable time intervals
may exist due to animal treatment, system updates, defective recording machines
and different recording schemes between herds. In these cases, previously proposed
lactation models either fail to generate predictions or heavily depend on the quality
of the missing value imputations to perform well. However, little information
on the generalizability of these models on incomplete data is known, as most of
these models were trained and evaluated on complete datasets without missing
information. Second, individual curve-fitting models, such as those proposed
by Macciotta et al. (2002) and Vasconcelos et al. (2004) only take into account
historical milk yields to make predictions. Occasionally though, recorded milk
yields exist before and after the missing milk yield that is to be inferred. In that
case, modeling the correlations between the prediction and all its adjacent milk
yields may yield more accurate estimates. Third, individual milk yields are either
modeled by group averages or by a limited amount of preceding yields recorded
in the same lactation cycle. This means that milk yield in early lactation is either
estimated by only using herd statistics or not modeled at all.

This dissertation contributes to the literature on lactation modeling in two ways.
First, we present a lactation model that infers all missing milk yields of a lactation
curve based on all the observed information in the lactation cycle. More specifically,



6 CHAPTER 1. INTRODUCTION

in Chapter 2, we present a method to predict a certain daily milk yield using all
the milk yields observed before and after the moment of prediction, regardless of
the number of observations and the recording interval between the different milk
yields. We also investigate whether adding information on herd, parity and health
and reproduction events improves the estimated milk yield curve. The presented
framework can be used to more accurately infer missing milk yields along the
entire lactation curve and therefore obtain more realistic estimates of the herd’s
productivity and hence revenues and costs. Moreover, the model is also able to
predict future yields, which facilitates data-driven culling and breeding decision as
well as improved animal monitoring. Second, we propose a predictive framework
that generates the expected lactation curve of a certain lactation cycle based on all
the observed information in the preceding cycle. In particular, in Chapter 3, we
investigate whether a combination of data on milk yield, herd and parity statistics as
well as health and reproduction events observed in the preceding cycle can generate
a more accurate estimation of the milk yield curve than the lactation curve generated
by a classic parametric model. This framework can be used to calculate the milk
losses immediately after calving and, therefore, supports animal monitoring during
the entire course of the lactation cycle. In addition, the framework enables farmers
to increase their forecast horizon with respect to the farm’s future profitability.

1.2.3 Predicting the moment of calving

Together with forecasting milk yields, monitoring the moment of calving has
become a crucial aspect of dairy farm management as the moment of parturition is
one of the most critical moments in the life of both the dam and the newborn (Barrier
et al., 2013). Dystocia, i.e. difficulties or abnormalities experienced during calving,
can severely compromise the animal’s welfare and represents a problem worldwide
for the dairy industry (Barrier et al., 2013; Mee et al., 2014). In fact, the incidence
rate of dystocia in dairy cattle comprises 2% to 22% in Europe (Crociati et al.,
2022). The physiological effects of dystocia on cows are well known. Dams that
experience dystocia are at increased risk of damage to the uterus which may cause
uterine diseases such as metritis and endometritis (Bruun et al., 2002; Ghanem et al.,
2013). Moreover, it is believed that dystocia is a painful and stressful experience for
dams (Huxley and Whay, 2006; Laven et al., 2009). On the other hand, dystocial
calves can show signs of prolonged hypoxia and significant acidosis (Lombard et al.,
2007) as well as internal bleedings and external lesions (Berglund et al., 2003).
Moreover, it has been reported that more than 50% of stillbirths can be directly
attributed to dystocia (Meyer et al., 2000). Hence, as difficulties with delivery
adversely impact animal welfare and therefore farm economics, dystocia is seen
as a major economic trait for a dairy farmer (Abdela and Ahmed, 2016). In fact,
previous research has estimated the total cost associated with a difficult calving at



1.2. AI FOR ANIMAL MONITORING 7

C500 (McGuirk et al., 2007). This cost can be attributed to a lower fertility, milk
production and survival rate of the dam (Tenhagen et al., 2007) as well as a lower
future productivity, growth rate and survival rate of the newborn (Crociati et al.,
2022). In addition, difficult calvings also affect costs due to an increased need for
veterinary assistance and the lost value of dead newborns (McGuirk et al., 2007).
Prevention of dystocia should therefore be a top priority of dairy farms to improve
animal welfare and farm economics.

Several risk factors of dystocia such as the biology of the dam (e.g. breed,
parity, pelvic diameter), the weight, sex and position of the calve as well as seasonal
effects have been identified (Johanson and Berger, 2003; Norman et al., 2010).
Good farm management can significantly reduce some of these risks and increase
the reproductive performance (Tenhagen et al., 2007). Timely delivery assistance,
for example, may significantly reduce the risk of dystocia, reduce the pain and
stress experienced during labor and improve the reproductive performance of the
dam (Mainau and Manteca, 2011). Providing timely assistance, however, requires
an accurate estimate of the moment of parturition. In the past, dairy farmers mainly
relied on the day of the last insemination or on visual ispection to estimate the
expected calving time. Yet, as herd sizes tend to increase yearly, manually inferring
the calving time becomes challenging even for experienced personnel (Borchers
et al., 2017; Lange et al., 2017). Automated monitoring systems that accurately
predict the moment of calving have therefore become essential tools for dairy
farmers (Ouellet et al., 2016).

Around the moment of calving, several behavioral changes take place in dairy
cattle. Eating, ruminating and grooming behavior decrease, while lying, restlessness
and tail raising behavior increase (Huzzey et al., 2005; Jensen, 2012; Miedema et al.,
2011a,b; Speroni et al., 2018). Visual observation of these behavioral parameters,
however, is time-consuming, subjective and prone to human error and requires
experienced observers (Zehner et al., 2019). Various sensors such as pedometers,
accelerometers, microphones and thermometers have therefore been developed
to automatically detect these behaviors (an overview of commercially available
sensors is given in Crociati et al. (2022)). As a result, most frameworks that have
been proposed in literature to predict the moment of calving rely on data obtained
from these sensors to generate calving alerts (Borchers et al., 2017; Fadul et al.,
2017; Keceli et al., 2020; Ouellet et al., 2016; Rutten et al., 2017; Zehner et al.,
2019).

Yet, some caution should be exercised in the interpretation of the results of
the previously proposed frameworks. Most previous studies rely on a very limited
sample of cows coming from one herd. The generalizability of these models on
cows coming from different herds should therefore be investigated in more detail.
Additionally, most previous studies use traditional machine learning algorithms
to generate calving predictions. When dealing with multidimensional time series
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data containing complex interdependencies between interacting variables, however,
these models tend to fall short in learning patterns compared to more advanced
deep learning algorithms. Furthermore, previous studies rely on the assumption
that the data in real everyday conditions is of adequate quality, as observations with
missing values are removed from the analysis. In reality, however, the data obtained
from sensors such as pedometers and accelerometers can contain many missing
values due to animal treatment, defective recording machines, faulty transmission
and software updates. As a result, the performance of the models developed in
previous studies may considerably decrease when deployed in practice.

Hogeveen et al. (2010) defined three criteria that must be satisfied for a calving
detection model to be implemented for commercial livestock production: a high
performance, a relevant time window and a high degree of similarity between
the study design and the real everyday conditions in commercial farms. In this
dissertation, we contribute to the literature on calving prediction by providing a
framework that satisfies these three conditions and therefore is suitable for practical
implementations. In particular, we provide a framework that has been validated on
a large dataset for different time intervals with respect to the moment of calving,
i.e. 24h, 12h, 6h, 3h and 1h. This approach allows farmers to receive hourly alerts
on the probability of calving starting within different time frames. Moreover, no
assumption was made about the quality of the data, as we developed a framework
that is able to generate reliable predictions, regardless of the amount of missing
values in the sensor data. Hence, the framework proposed in this study can be
used in practice to predict the moment of calving, and therefore facilitate timely
supervision as well as improve animal welfare.

1.3 Data

Chapter 2 and 3. The data leveraged in these chapters were gathered from 104
different dairy farms. Each of these farms was equipped with a Herd Management
System (HMS) that allowed dairy farmers to record animal lifetime events and
collect milkmeter information. The lifetime events which include calving, heat,
pregnancy, insemination, mastitis, disease, abort, culling and death were manually
recorded by the farmer on connectable devices such as tablets, smartphones or
computers. The HMS data sources were collected by a cloud-based dairy analysis
application (www.mmmooogle.com). The platform applied basic cleaning proce-
dures on incoming data. Duplicate milk yields were dropped and unrealistic event
sequences were corrected (e.g. calving between pregnancy and dry-off). By using a
proprietary data ontology model, the platform standardized and mapped the HMS
data to a uniform data representation. Herd statistics as well as animal KPI’s were
automatically calculated based on the collected HMS data. The data were collected
between 2013 and 2019 and comprised 12790342 milk yield recordings coming
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from 59122 lactations of 35133 unique cows. Furthermore, 304742 recordings of
13 unique lifetime events were registered during the time period of this research
study.

Chapter 4. The data for this chapter was obtained from 8 commercial dairy
farms with freestall barns in the Netherlands between August 2016 and November
2020. Each of these farms had implemented the Nedap Infrastructure (Nedap,
Groenlo, The Netherlands) that consisted of a server, antenna and wearable sensors.
From the moment the infrastructure was running, each cow was equipped with the
Nedap Smarttag Leg and the Nedap Smarttag Neck sensor for the entire period
of this study. The Nedap Smarttag sensors use G-sensors, which use acceleration
as a measure of movement and the x-, y-, and z-axes (3-dimensional space) to
determine the angle. Every second, acceleration is recorded by the Nedap sensors.
A proprietary neural network was used to determine whether the cow was displaying
the specified behavior per minute. Daily aggregates were automatically obtained by
the Nedap software. The Leg sensor was attached to the front leg and measured the
number of steps, standing time, walking time and lying time. The Neck sensor was
attached to the neck and measured eating time, rumination time and inactive time,
i.e., time not spend eating and ruminating. Apart from the sensor data, the moment
of calving of each of these cows was manually recorded by the farmer. In total, the
day of calving was registered for 3902 different calvings. For 572 of these calvings,
the exact timestamp was registered by the farmer at the moment the farmer visually
observed the parturition, i.e. the completed birth of the calve.

1.4 Outline and contributions of this dissertation

The frameworks presented in this dissertation allow dairy farmers to continuously
monitor their cows as they transition through their lactation cycles. This helps
dairy farmers to better manage the welfare of their animals, particularly during the
transition period. This is the period between late pregnancy and early lactation and
is one of the most critical moments of a dairy cow as most health disorders occur
during this time (Drackley, 1999). This is demonstrated in more detail by Fig 1.1,
in which a schematic overview of the frameworks developed in this dissertation
is given. In Chapter 2, missing milk yields of a certain lactation cycle (dashed
blue line) are predicted by herd statistics as well as the observed milk yields and
health events in the same lactation cycle (solid blue line). At the end of the lactation
cycle, the lactation curve of the next cycle (dashed yellow line) is predicted by all
the observed milk yields, health events and herd statistics in the previous lactation
cycle (solid yellow line) in Chapter 3. Then, before the start of the next lactation
cycle, the moment of calving (dashed green line) is predicted in Chapter 4 by using
behavioral sensor data (solid green line). In the remainder of this Section an outline
will be provided for the remainder of the dissertation and the main contributions in
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Figure 1.1: Schematic overview of framework of this dissertation. Solid horizontal
line=time interval of features, dashed horizontal line=time interval of labels

each chapter are highlighted.

In Chapter 2, a deep learning framework to infer missing milk yields along the
entire lactation cycle of a dairy cow is assessed. Past studies have primarily focused
on predicting the expected yield at a specific point in the lactation cycle based
on a fixed number of historical milk yields measured at constant time intervals.
These lactation models, however, only partially take into account the complex
interdependencies between all the interacting factors measured over different time
intervals. Furthermore, these models fall short when missing milk yields or variable
lengths of intervals between different measurements are present in the lactation
curve. We extend previous research by proposing a lactation model in which
missing milk yields along the lactation curve are dynamically updated as soon
as new information in the corresponding lactation cycle becomes available. In
particular, a sequential autoencoder (SAE) is trained to encode and decode all
the available information on milk yields, herd statistics, parity, and health and
reproduction events observed during the lactation cycle. It is shown how the
framework can be used by dairy farmers to accurately predict a cow’s milk yield,
which in turn allows farmers to obtain more accurate forecasts on their future
revenues and to enhance their animal monitoring systems.

In Chapter 3, a deep learning model is implemented that predicts the entire
milk yield curve of a certain lactation cycle. In previous research, lactation models
rely on a fixed amount of observed milk yield in early lactation to predict milk
yield curves. This methodology, however, makes animal monitoring particularly
difficult in early lactation, as there exists no information on expected milk yields in
the period immediately after calving. In contrast, this study proposes a framework
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to predict the entire lactation curve of dairy cows by leveraging information on milk
yields, health and reproduction events and herd statistics observed in the preceding
cycle. This framework allows dairy farmers to increase the forecast horizon with
respect to the herd’s future productivity as well as to improve animal monitoring in
early lactation.

In Chapter 4, a forecasting methodology is developed that aims to help dairy
farmers to provide timely calving assistance by predicting the moment of calving.
While machine learning frameworks were already developed to predict the onset of
calving, their lack to accurately impute missing values and extract useful patterns
from high-dimensional sequential data remains a barrier to the deployment of these
models in practice. This study evaluates deep learning models to predict calving
within 24h, 12h, 6h, 3h and 1h based on sensor data measuring a cow’s eating, rumi-
nating, walking, lying and standing behavior. Additionally, a novel methodology is
analyzed to impute missing sensor values. This approach shows how deep learning
algorithms can leverage all the available information to impute missing values in
sensor data. The results show that deep learning algorithms outperform machine
learning methods to predict the moment of calving based on sensor data. Moreover,
it is shown that using the missing value imputations significantly improves the
predictive performance for observations containing missing values. The framework
proposed in this study can be used by farmers to optimize their calving management
and hence improve animal monitoring.
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2
Leveraging latent representations for

milk yield prediction and interpolation
using deep learning 1

2.1 Abstract

In this study, we propose a lactation model that estimates the daily milk yield by
using autoencoders to generate a latent representation of all milk yields observed
during the entire lactation cycle, irrespective of the length of the time interval
between the different measurements. More specifically, we propose a sequential
autoencoder (SAE) to process the sequential data, extract and decode the low-
dimensional representations and generate the milk yield sequences. The SAE is
compared with a more traditional multilayer perceptron model (MLP) which uses
herd and parity information and lagged milk yields as input. Results show that
incorporating the recorded daily milk yields, lactation number, herd statistics as
well as reproduction and health events the cow encountered during the lactation
cycle results in the most qualitative latent representations. Moreover, by leveraging
these low-dimensional encodings, the SAE reconstructed the entire milk yield
curve with a higher accuracy than the MLP. Hence, we present a framework that is
able to infer missing milk yields along the entire lactation curve which facilitates

1Based on: Liseune, A., Salamone, M., Van den Poel, D., Van Ranst, B., & Hostens, M. (2020).
Leveraging latent representations for milk yield prediction and interpolation using deep learning. Journal
of Computers and Electronics in Dairy Science.
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selection and culling decisions as well as the estimation of future earnings and costs.
Furthermore, the model allows farmers to enhance their animal monitoring systems
as it incorporates the sequence of health and reproduction events to forecast the
cow’s future productivity.

2.2 Introduction

Lactation models are one of the most important analytical tools in the dairy cattle
industry as this enables the farmer to get a projection of the herd’s total productive
capacity and its future earnings (Ehrlich et al., 2011; Grzesiak et al., 2003; Sanzogni
and Kerr, 2001). Moreover, by estimating each cow’s expected milk yield, the
required feed intake, energy and protein requirement and plant utilization can be as-
sessed, allowing the farmer to forecast its costs (Grzesiak et al., 2006; Murphy et al.,
2014). In addition, lactation models facilitate the selection process as it enables
the timely identification of the most productive females as well as superior bulls
based on the analysis of the total productivity of its offspring (Lacroix et al., 1995).
Furthermore, early detection of unproductive animals supports more informed
culling decisions (Njubi et al., 2010). Finally, by comparing a cow’s predicted milk
yields with the cow’s actual lactation curve, diseases such as mastitis as well as
other factors affecting the animal’s health could be detected more accurately and
hence facilitate more enhanced animal monitoring systems.

In early research, lactation curves were modeled by mathematical functions
describing the general pattern of the lactation cycle. These were often characterized
by an initial steep increase until a peak yield, followed by a longer and more gradual
decline. Wood (1967) for example proposed a gamma function expressing the rela-
tionship between a specific moment in time in the lactation cycle and the associated
expected milk yield by means of three parameters. Later, several extensions to
this model were proposed in order to fit a wider range of possible shapes (Ali and
Schaeffer, 1987; Ehrlich et al., 2011; Wilmink, 1987). The general purpose of these
models was to describe the lactation curves of homogeneous groups of animals by
its deterministic components as individual data on animals was often still lacking
(Macciotta et al., 2011). As a result, the expected yield of an animal was entirely
determined by the average curve of the group to which the animal could be assigned.

As time passed however, more data on individual animals became available
and the need to monitor individual animals increased. As a result, more complex
models such as polynomial and spline regressions were proposed that, in addition
to the moment in time, also took into account individual features such as age,
season of calving and lactation number (Grzesiak et al., 2003). Later, with the
advent of Artificial Intelligence (AI), several other attempts were made to predict
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milk yields by making use of neural networks. Lacroix et al. (1995) were the
first to successfully train a multilayer perceptron model (MLP) to predict the 305d
cumulative milk yield of a cow. In later studies, this model was improved by using
more sophisticated data preprocessing techniques (Lacroix et al., 1997) and by
constructing multiple networks, each assigned to a specific task (Salehi et al., 1998).
Furthermore, neural networks have been used to predict the 305d cumulative milk
yield of the first lactation cycle (Njubi et al., 2010; Sharma et al., 2007) as well
as to forecast a herd’s total production (Sanzogni and Kerr, 2001). Other studies
on the other hand investigated the use of neural networks in modeling the entire
lactation curve rather than predicting the cumulative productivity (Grzesiak et al.,
2006).

In most of these models however, the predicted milk yield does not take into
account the sequence of previously produced milk yields and is mainly dependent
on a couple of environmental factors as well as animal characteristics which remain
constant during the entire lactation cycle. As a result, once these models are ap-
plied, the predictions remain constant during the entire lactation cycle, regardless
of newly produced yields observed after the moment of prediction. Yet, common
environmental factors such as weather, nutrition and herd management as well as an
animal’s repeatability of yields result in covariances between adjacent milk yields
(Ali and Schaeffer, 1987). Therefore, some research presented frameworks in which
correlations between consecutive milk yields were taken into account. Macciotta
et al. (2002) and Vasconcelos et al. (2004) for example used Autoregressive (AR)
models which predicted a test-day yield (TD) based on a fixed number of lagged TD
records. Murphy et al. (2014) on the other hand applied a MLP which incorporated
lagged features as well as yields to forecast the entire herd’s production in the
subsequent time step.

Nevertheless, these models were all based on the assumption of the prediction
being dependent on a sequence of a fixed number of historical milk yields measured
at constant time intervals. Yet, in reality, variable intervals between measured
observations often occur due to various reasons, e.g. defective recording machines,
animal treatment and variable recording schemes between different herds. Further-
more, as the main focus of these models was to forecast yields based on historical
observations, they only partially took into account the existing correlations between
the prediction and all the adjacent recordings. As a result, these models lacked
the ability to exploit past as well as future data to interpolate gaps of missing
information across the lactation curve.

In this research, we propose a lactation model in which missing milk yields
along the lactation curve are dynamically updated as soon as new information
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in the corresponding lactation cycle becomes available. In addition to using all
the recorded milk yields along the lactation curve, the lactation number, herd
statistics and a cow’s sequence of reproduction and health events it encountered
during the lactation cycle are used to infer the missing parts of the lactation curve.
More specifically, a sequential autoencoder (SAE) is trained to generate a latent
representation of the entire quantity of information available in a certain lactation
cycle, and uses this low-dimensional encoding to reconstruct the entire milk yield
curve. As a result, the estimate of a milk yield at a specific point in time is generated
by making use of all present information before and after the moment of prediction,
regardless of the length of the time intervals between the different data observations.
We believe that the presented framework can add value to dairy farmers in three
different ways. First, the presented framework can be used to continuously monitor
their cattle by comparing the true milk yield with the expected lactation curve. This
helps farmers to detect unforeseen milk losses, which may indicate health-related
problems. Moreover, by incorporating the impact of reproduction and health events,
the framework can generate more realistic estimates of the cow’s future productivity.
Second, predicting milk yields allows dairy farmers to obtain forecasts of their
herd’s total production and hence of their future revenues as well as costs such
as required feed intake as well as energy consumption. Third, the framework
supports breeding and culling decisions by providing timely predictions of a cow’s
productivity.

2.3 Materials and Methods

2.3.1 Data

The data used in this study was collected from 104 different farms between 2013
and 2019. Farms were equipped with different Herd Management Systems (HMS)
to record the animals lifetime records and collect milkmeter information. The HMS
data sources were streamed and standardized using a cloud-based dairy analysis
application (www.mmmooogle.com). In total, 59122 lactations of 35133 distinct
cows have been collected, with an average of 216 recorded daily milk yields per
lactation. In addition, 304742 recordings of 13 unique events were collected. Based
on the milk and event recordings, the HMS also calculated several herd statistics
per parity. In addition to metrics such as the average milk produced and the average
lactation duration, the herd statistics also included a score to identify the average
recording quality of the lactation cycles. This score was developed by the platform
and indicates how much the sequence of events in certain lactation cycle deviates
from the standard sequence of events during a lactation: Calving, Heat, Breeding,
Pregnancy Positive, Calving. In the case of a Pregnancy Negative event, the Heat
and Breeding events are repeated in the standard sequence. Each lactation cycle
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is initialized with a score of 1 and for each missing event in sequence the score is
multiplied by 0.5. The resulting product per lactation is then subtracted from 1 and
results in a score between 0 and 1, where 0 represents a standard sequence of events.
Averaging this score over all the lactations generated in a specific herd produces the
herd’s average sequence quality score. The final dataset was obtained by extracting
milk yields and events recorded during the first 305 days of each lactation cycle,
with zero values representing missing milk yields and a special PAD symbol to
indicate if no events occurred that day. Events that did occur in the validation or
test set but not in the training set were labeled as UNKNOWN and were considered
as a rare but unknown event. Subsequently, each record was augmented with the
corresponding herd’s statistics and lactation number, resulting in a two-dimensional
sequence of yields and events and a static vector comprising the lactation number
and herd statistics per observation. Table 3.1 gives an overview of all the indepen-
dent variables used in this study.

Variable Group Dimension Variable Name

Milk Yields 1 x 305
Milk Yield

Herd Statistics 10 x 1
Avg 21d Milk
Avg 75d Milk
Avg 305d Milk
Avg Milk
Avg Days Dry
Avg Days Open
Avg Days Pregnant
Avg Days In Milk
Avg Calving Interval
Avg Sequence Quality

Events 1 x 305
Mastitis
Abort
Breeding
Stop Breeding
Pregnancy Negative
Pregnancy Positive
Calving
Disease
Died
Heat
Cull
Dryoff
PAD
UNKNOWN

Parity 1 x 1
Lactation Number

Table 2.1: Independent variables used in this study

After normalizing the milk yields and herd statistics, the data was partitioned in
three sets. A training set for training the models and a validation set for hyperpa-
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rameter selection. A test set was used for obtaining an unbiased evaluation metric
of the final model. This validation setup was preferred over cross-validation, which
commonly requires a repeated model training procedure (Li et al., 2020). There-
fore, using cross-validation for deep learning models often becomes practically
infeasible, as the computational burden linearly grows with the number of folds.
Since the validation and test set were both used for model evaluation, a stratified
sampling procedure was used such that only records with complete milk yield
curves were assigned to these sets (Parsons, 2017). From the entire collection of
observations containing no missing milk yields, 1000 observations were randomly
assigned to the validation as well as the test set. The remaining observations with
complete information were assigned to the training set together with the collection
of observations containing incomplete milk yield curves. However, in order to
train a model that is able to reconstruct an entire milk yield curve given a random
subset of data gathered in the corresponding lactation cycle, the training set should
contain a representative sample of all possible configurations of information avail-
able in a lactation cycle. Hence, instead of feeding the training data directly into
the model, missing values were randomly inserted in the sequential data of each
observation every time it was passed to a training iteration. More specifically, in
addition to removing each daily observation with a certain probability, a complete
window of records across the lactation cycle determined by a randomly chosen start
and end day could be set to missing. Hence, as depicted by Fig. 2.1, one of four
possible missing data imputation patterns was applied to each observation every
training iteration: interpolation, prediction, missing window or backtracking. For
the prediction, backtracking and missing window imputation patterns, the start and
end days are randomly sampled from the lactation cycle, with each day having the
same probability of being sampled. For the interpolation imputation pattern, a milk
yield is randomly dropped according to a probability that is determined for each
lactation curve separately, such that the milk yields of lactation curves with few
missing values have a higher probability of being removed, while the milk yields
of lactation curves with many missing values have a lower probability of being
removed. In particular, the probability of each milk yield being removed from a
certain lactation cycle is determined by the following formula:

Pdrop = 0.7 ∗ (s/305)

with Pdrop being the probability of a milk yield being set to missing and s being
the number of non-missing milk yields in the lactation curve. As a result, the drop
probability ranges between 0 and 0.7, with 0 for lactation curves with no recorded
milk yields and 0.7 for complete lactation curves. Hence, since each observation
is randomly injected with missing values every training iteration, the model is
constantly fed with new observations. This reduces the chance of overfitting and
hence improves the model’s generalization capacity. In addition, the model is
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forced to learn multiple tasks such as prediction and interpolation simultaneously,
resulting in a more versatile lactation model.

(a) Interpolation (b) Prediction

(c) Missing Window (d) Backtracking

Figure 2.1: Missing data imputation patterns. Purple solid line = observed milk yields,
orange dotted line = injected missing milk yields

2.3.2 Sequential Autoencoder

2.3.2.1 Convolutional Neural Network

Convolutional neural networks (CNN) are a type of deep learning algorithms
specifically designed to process grid-like data and have been responsible for major
breakthroughs in object detection and classification (He et al., 2016; Szegedy et al.,
2015). Yet, while CNNs were initially developed for computer vision applications,
recent research has shown that these type of architectures can also be of great value
for time series analysis given their ability to represent a chronological sequence
by a set of automatically extracted features (Zhao et al., 2017). In general, a
CNN consists out of a sequence of blocks with each block typically comprising a
convolutional layer for feature extraction and a pooling stage for downsampling and
obtaining the most salient elements. More specifically, Fig. 3.1 shows how a CNN
architecture is constructed for a time series of length S and width N . A kernel of size
K < S and width N is slided from the beginning to the end of the sequence. Each
time the kernel is shifted one position, the kernel weights are multiplied with the
elements of the sequence that are covered by the kernel at that point. Subsequently,
a non-linear activation function, such as rectified linear units (ReLu), is applied to
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Figure 2.2: Convolutional neural netowork for time series

the sum of the outputs of the multiplication and hence results in a new time series
of the features extracted by that kernel. The feature map is then downsampled by a
pooling layer, which summarizes the presence of the feature in every specific time
window. Finally, the pooling layer’s output is flattened to obtain a feature vector
summarizing the entire time series and can be used for upstream tasks. By altering
the number of kernels or the kernel size, different properties of the time series
can be extracted, while adding convolutional blocks allows to learn more complex
patterns. In this research, a CNN was applied on the sequential data comprising
the milk yields and events encountered by a cow during a specific lactation cycle.
However, as the events were represented by a sequence of symbols, an embedding
matrix was used to convert every event into a numerical representation, defined in a
continuous vector space. More specifically, by initializing a random matrix with
values from a normal distribution of size 14 x k, each of the 14 events occurring in
the sequence was replaced by the corresponding matrix row to produce a 305 x k

sequence. Yet, instead of keeping the embedding vectors fixed, the matrix values
were considered as network parameters and were updated during training in order
to obtain the most optimal embeddings. Additionally, instead of applying a ReLu
activation function which is expressed as follows:

f = max(0,x)

with x being the feature map produced by a specific kernel, a Leaky ReLu function
was used to obtain the non-linear activations and is defined as follows:

f = max(αx,x)

with α being a constant and often set to small values. While the output of the
ReLu function equals 0 for every negative value of the input x, the Leaky ReLu
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function contains a positive slope for the entire range of x which can facilitate
gradient-based optimization. The feature maps were downsampled by making use
of max pooling layers which extract the maximum response value of a specific
feature in a certain time interval. The output of the last convolutional block was
flattened and summarized the sequential data gathered during an entire lactation
cycle.

2.3.2.2 Autoencoder

While MLPs and CNNs are mainly used for supervised learning tasks, autoencoders
(AE) are a type of neural networks specifically designed to compress the input
data in an unsupervised manner (Hinton and Zemel, 1994). In particular, the AE
takes an input x ϵ IRd and maps it into an encoded representation z ϵ IRl with
l < d by means of an encoder parameterized by We. A decoder defined by Wd

then converts the latent representation z back into a reconstruction of the input
x̃ ϵ IRd. The entire model is trained by minimizing the reconstruction loss for all
observations:

loss =

n∑
i=1

L(x(i), x̃(i))

=

n∑
i=1

L(x(i), f(Wd; z
(i))

=

n∑
i=1

L(x(i), f(Wd; f(We;x
(i))))

In addition to extracting the most salient features by applying dimensionality
reduction, an AE can also learn to impute missing values by corrupting the input
before it is passed to the encoder (Bengio et al., 2013). More specifically, instead
of minimizing the original reconstruction loss, the AE is now trained to undo the
corruption of the original input:

loss =

n∑
i=1

L(x(i), f(Wd; f(We; x̂
(i))))

with x̂ being a corrupted version of the original input x. Hence, by randomly
injecting missing values into the original observations and forcing the dimension-
ality of the latent representation to be smaller than that of the input, the model
learns to impute the missing values by extracting the most salient features from the
incomplete information. Hence, in this research, an AE was applied on the features
extracted by the CNN as discussed in the previous section. Since these features
represent a summary of the sequential information still present after applying one
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of the four possible imputation schemes as discussed in Section 2.3.1, the AE
learns to extract the most prominent traits of the lactation curve from the available
information and uses this latent representation to reconstruct the complete feature
set. In order to get a more informative encoding however, other features such as
the herd statistics and lactation number were added to the encoder’s input, as these
could partially explain the shape of the lactation curve. The AE’s encoder consisted
out of a sequence of layers decreasing in size, with each hidden layer comprising
a linear transformation followed by a Leaky ReLu activation. The output layer
was provided with a Sigmoid function in order to obtain latent features distributed
between 0 and 1. The decoder was the exact image mirror of the encoder except for
the output layer. The latter had the same dimensionality as the CNN’s output, since
we were only interested in the reconstruction of the lactation curve rather than the
entire feature set gathered during the lactation cycle.

2.3.2.3 Deconvolutional Neural Network

As discussed in the previous section, the AE’s output comprises a feature vector of
the same dimensionality as that of the CNN’s output. In other words, it represents
the reconstruction of several abstract features extracted from the lactation curve
rather than the sequence of milk yield itself. Hence, in order to convert this static
feature representation back into its corresponding lactation curve, a deconvolutional
neural network (DNN) is used to reverse the CNN’s operations (Zeiler et al., 2010).
However, since the initial input of the CNN comprises the sequence of milk yields
as well as embedded events, the DNN’s final layer was forced to return a one-
dimensional sequence instead of producing multivariate time series. The other
DNN’s layers on the other hand were the exact inversions of the corresponding
CNN’s layers. The combination of the CNN, AE and DNN results in the sequential
autoencoder (SAE).

2.3.2.4 Training

The SAE was trained by applying the backpropagation algorithm (Rumelhart et al.,
1986). In this algorithm, the inputs are first propagated forward through the network
to produce an output. A loss is then calculated by comparing the outputs with the
true labels. Next, the gradients with respect to weights are computed by propagating
the errors backward through the network. Finally, a gradient-based optimization
algorithm such as stochastic gradient descent or Adam (Kingma and Ba, 2014)
is used to update the parameters. However, as the training observations included
complete as well as incomplete lactation curves, a loss calculated between the
reconstruction and the true input over the entire lactation cycle would be biased.
The reconstruction loss therefore only took into account the errors between the
milk yields which were actually recorded and the corresponding reconstructions.
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Several model hyperparameter settings were assessed by making use of an early
stopping procedure in which a model was trained as long as its performance
on the validation set increased. The next configuration of hyperparameters was
determined by a Bayesian optimization procedure. In this algorithm, the exploration
of a parameter setting with uncertain results is traded off against the exploitation
of a point in parameter space with high model performance. In addition to the
parameters defining the model’s architecture, the inclusion of the event, herd and
parity information was also considered as hyperparameter in order to obtain the
most discriminative group of features. Furthermore, the dimensionality of the
encoder’s output was also set as a hyperparameter in order to find the optimal
encodings for the lactation curves. The best performing model was retrained on
the combination of the training and validation set and was subsequently evaluated
on the test set. In order to ensure a wide variety of evaluation observations and a
fair model selection procedure, four fixed and significantly different variations of
each imputation scheme (see Section 2.3.1) were applied to each validation and test
record. As a result, the validation and test set both comprised 16000 records. An
overview of the entire methodology of this study is illustrated by Fig. 4.4.

Figure 2.3: Schematic overview of the methodology used in this study

2.3.3 Multilayer Perceptron Model

In order to benchmark the SAE’s performance, a standard MLP was trained to
predict milk yields. In contrast to the SAE, an MLP is not designed to process
sequential data. It is a supervised learning model constructed to infer a relationship
between an input and a corresponding output. Hence, in order to construct the
MLP’s observations, the sequences of milk yields presented in Table 3.1 were
transformed. In particular, for a certain day t in a lactation cycle l with a non-
missing milk yield, one observation was generated with the output ylt being the
milk yield MYlt and the input xlt consisting of the days in milk t and a number of k
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preceding milk yields MYlt−1
, MYlt−2

, ..., MYlt−k
. In addition, the corresponding

parity and herd information were added to the input. This resulted in a training
set comprising 9086759 observations and a validation as well as test set consisting
out of 305000 observations. In correspondence to the SAE’s encoder, the MLP
was constructed out of a sequence of layers with each layer comprising a linear
transformation followed by a Leaky ReLu activation function. In addition to the
model’s architecture, the number of lags was also considered as hyperparameter.
A random search in hyperparameter space determined the MLP configuration in
each training iteration. The MLP weights were updated by applying the Adam
optimization and backpropagation algorithms (Kingma and Ba, 2014; Rumelhart
et al., 1986). In order to avoid overfitting, the early stopping procedure was applied
in which the MLP was trained until its validation performance started to degrade.

2.3.4 Model Evaluation

The model performance was assessed by four metrics commonly used for evaluating
lactation models.

Coefficient of Determination (R2). The R2 value is defined as the proportion
of the variance of the dependent variable explained by the independent variables
and indicates the model’s goodness of fit. More specifically, if yi denotes the true
value for the ith observation and ŷi the corresponding prediction, then the R2 is
given by

1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where ȳ represents the mean of the dependent variable.
Pearson Correlation Coefficient (ρ). The ρ measures the linear correlation

between two variables. It ranges between -1 and 1, with 1 meaning that both
variables are perfectly positively correlated, -1 meaning that the variables are
perfectly negatively correlated and 0 meaning that both variables are not linearly
related.

cov(y, ŷ)

σ(y)σ(ŷ)

Root Mean Squared Error (RMSE). The RMSE is a widespread measure for
evaluating regression models and is equal to the the square root of the average of
squared differences between the predictions and actual observations.

1

n

√√√√ n∑
i=1

(yi − ŷi)2
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Since the errors are squared, the model will be penalized more for making predic-
tions that differ greatly from the corresponding true value.

Mean Absolute Percentage Error (MAPE). While the analysis of the RMSE
greatly depends on the scale of the dependent variable, the MAPE statistic measures
how much the model’s predictions deviate from the corresponding true value on
average and hence allows for a more easy interpretation.

1

n

n∑
i=1

|yi − ŷi|
yi

× 100%

The model’s general performance was assessed by calculating the metrics on
all the test observations. In addition, the model was evaluated on every imputation
task by obtaining the metrics on each subset of samples that were generated by a
specific imputation pattern. For the model’s predictive performance, the metrics
were obtained for different windows of available data. Furthermore, milk yields
in the window of available data were randomly set to missing according to a pre-
specified sampling rate in order to inspect the model’s robustness towards variable
lengths of time intervals between different recordings.

2.3.5 Variable Importance

In order to assess the importance of each feature towards inferring missing milk
yields, the permutation variable importance (VI) score was calculated (Breiman,
2001). This score measures how much the model’s error increases on average when
a specific feature is randomly permutated:

V Ik =
1

n

n∑
i=1

ẽk,i
e

with e being the model’s error with complete information and ẽk,i being the model’s
error obtained for the ith random permutation of the feature k. By randomly
permutating multiple features simultaneously, the VI score of an entire feature
group can be calculated. The VI score, expressed in terms of the relative increase in
RMSE, was calculated for each entire group of features as well as for its individual
members.

2.3.6 Programming Tools

All data processing and analyses were done in Python 2.7 (Python Software Foun-
dation, https://www.python.org/) with the add-on packages Pandas (pandas de-
velopment team, 2020) and NumPy (Harris et al., 2020) for data preprocessing,
scikit-learn (Pedregosa et al., 2011) for machine learning modeling and model
evaluation, TensorFlow (Abadi et al., 2015) and Keras (Chollet et al., 2015) for
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deep learning modeling and Matplotlib (Hunter, 2007) and seaborn (Waskom, 2021)
for data visualization.

2.4 Results

2.4.1 Model Selection

For the SAE’s early stopping procedure, each model configuration was evaluated
in terms of the RMSE on the validation set every 5000 training iterations with a
batch size of 32. The model’s updated weights were saved every time the validation
performance increased. Model training was terminated once the evaluation metric
obtained on the validation set did not improve for 5 consecutive times. The SAE’s
next configuration of hyperparameters was determined by a Bayesian optimization
algorithm which was initialized by evaluating 5 randomly sampled model con-
figurations. The best performing model included a CNN that was trained on the
milk yields as well as events, with the events being embedded into a 5-dimensional
vector space. The CNN’s architecture consisted out of 6 convolutional blocks, each
one obtained by means of kernels with size 3, same padding and a Leaky ReLu
function for non-linear activation with α being 0.2. The first two convolutional
blocks applied 16 different kernels, while 32 kernels were used in block 3 and 4.
The last two convolutional blocks both used 64 kernels. In order to extract the most
salient elements, a max pooling layer of size 4 was applied to the output of the
first block, while a max pooling layer of size 2 was used for block 3 and block 5.
The best results were obtained by including the lactation number and herd statistics
in the encoder’s input. The MLP encoder contained 4 hidden layers of sizes 200,
100, 100 and 50 respectively and an output layer of size 20. Except for the output
layer, the MLP decoder was the exact mirror image of the encoder. A Leaky ReLu
activation function with α being 0.2 was used for each hidden layer in both the
MLP encoder and decoder. The DNN consisted out of the exact inversions of every
CNN’s hidden layer. The DNN’s output layer comprised one kernel of size 3 and
a Sigmoid activation function. In order to match the input shape, a valid padding
was used and the last observation of the output sequence was discarded. As a result,
the DNN then returned a sequence of 305 values ranging between 0 and 1. The
best performing MLP configuration was obtained by a random search over the
hyperparameter space and by applying an early stopping procedure in which model
training was completed when the validation RMSE did not improve after 3 entire
training epochs. Milk yields were most accurately predicted by taking into account
15 lags and with the MLP’s architecture consisting out of 3 layers with 100, 50
and 50 neurons respectively. Each layer consisted out of a linear transformation
followed by a Leaky ReLu activation function with α being 0.1. Training was
completed after 6 training epochs. The SAE and MLP were both trained by making
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use of the Adam optimization algorithm and an initial learning rate of 0.0001.

2.4.2 Model Performance

The goodness of fit of the MLP and the SAE on the training set is presented in
Table 2.2. The R2 and the ρ of the SAE on the entire training set were 0.84 and
0.91 respectively, while the MLP achieved an R2 and a ρ of 0.83 and 0.91. The
SAE’s and MLP’s goodness of fit however, was particularly lower for the curves of
the first lactation than for the other parities.

R2 ρ

Parity MLP SAE MLP SAE

1 0.75 0.76 0.87 0.87
2 0.83 0.83 0.91 0.91
3 0.83 0.84 0.91 0.92
4 0.84 0.85 0.92 0.92
5 0.84 0.85 0.92 0.92
6 0.84 0.84 0.91 0.92

All 0.83 0.84 0.91 0.91

Table 2.2: Goodness of fit of the MLP and SAE on the training set

The performance of the models on the test set in general as well as for each
particular imputation task as discussed in Section 2.3.1 is presented in Table 4.3.
Results show that the SAE performed better than the MLP in general as well as on
every task in terms of every evaluation metric. In particular, while the SAE’s maxi-
mum MAPE was 17%, the MLP’s MAPE ranged from 12% to 21%. As expected,
the MLP performed particularly worse on the backtracking task than the SAE, while
the interpolation and missing window tasks were best accomplished by both models.
While the RMSE of the SAE for the prediction and backtracking tasks comprised
5.68 and 5.97, the RMSE for the missing window and interpolation tasks comprised
4.76 and 4.06 respectively. In terms of all the other metrics, the SAE also performed
better on the missing window and interpolation tasks with the latter obtaining the
overall highest scores. For the prediction and backtracking tasks, all the evaluation
metrics achieved by the SAE did not differ considerably, except for the MAPE.
This can be explained due to a higher average value of the missing milk yields for
the backtracking task than for the prediction task. The SAE’s reconstruction of the
lactation curve for each fixed variation of every imputation pattern applied on a test
observation is depicted by Fig. 2.4.

Table 2.4 presents the predictive performance of the SAE for daily as well
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MLP SAE
Imputation method RMSE MAPE R2 ρ RMSE MAPE R2 ρ

Prediction 6.77 0.18 0.48 0.76 5.68 0.17 0.63 0.80
Backtracking 8.16 0.21 0.35 0.62 5.97 0.15 0.65 0.81
Missing window 6.29 0.15 0.56 0.78 4.76 0.11 0.75 0.87
Interpolation 4.62 0.12 0.79 0.89 4.06 0.10 0.84 0.92

All 6.52 0.17 0.57 0.77 5.15 0.13 0.73 0.86

Table 2.3: Performance of the MLP and SAE on the test set in general as well as for the
different missing data imputation patterns

as 305d yields given different windows of available data. The metrics for the
daily milk yields were obtained by solely considering the model’s errors on the
predictions of missing milk yields. The metrics for the 305d yield were calculated
by comparing the true 305d milk yield with the predicted 305d yield, i.e. the
summation of the cumulative observed yield and the cumulative predicted yield. In
order to inspect the SAE’s robustness towards variable lengths of time intervals
between different recordings, 0%, 30% and 60% of the milk yields in the window
of available data were randomly set to missing. The results show that the SAE’s
performance with respect to predicting daily milk yields consistently increased
when more information became available. While the SAE’s RMSE was 6.31 for
the prediction of 275 remaining milk yields, it decreased to 5.10 when half of the
lactation curve was known and to 3.93 for the prediction of the last 30 missing milk
yields. Similarly, the MAPE initially equalled 18% for 30 available observations
and decreased with one percentage point each time 60 additional observations be-
came available. Furthermore, the MAPE increased by maximum 1 percentage point
when the sampling rate was increased to 30% and 2 percentage points when the
sampling rate was increased to 60% for every possible forecast horizon. The other
metrics also didn’t change substantially when the sampling rate was increased, with
a maximum deviation of 0.26, 0.03 and 0.02 for the RMSE, R2 and ρ respectively.
These results demonstrate the robustness of the SAE towards varying samples of
available recordings.

For the predictions of the cumulative milk yield, the SAE’s performance in-
creased by a higher extent when more data became available. With only 30 record-
ings, the SAE was already capable of predicting the 305d yield with a MAPE of
10%, which decreased by a factor of 2 when 90 more recordings became available.
Halfway through the lactation cycle, the SAE was able to predict the 305d yield
with a 4% error rate. Furthermore, the MAPE for the 305d yield remained mostly
constant for the different sampling rates for every window of available data, with a
maximum increase of 1 percentage point.
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Figure 2.4: Visualization of the SAE’s inference of missing milk yields for one observation
in the test set for 4 fixed variations of each imputation pattern. Purple dashed line = true
milk yield, green dots = observed milk yields, orange solid line = predicted milk yields

An example of how the SAE dynamically adapts its predictions for different
windows of available data for a given test observation is visualized in Fig. 2.5.
First, given a set of 30 available observations, the SAE generates a lactation curve
that slightly underestimates the peak yield. Next, when 30 more observations are
recorded and the SAE becomes aware of the actual peak yield, predictions are
positively adjusted and the remaining milk yields are now slightly overestimated by
the model. However, as soon as information of the declining phase after the peak
becomes available, the SAE readjusts the estimated lactation curve and predicts rea-
sonable values for remaining milk yields. The SAE keeps improving its predictions
as more observations become available and adjusts the estimations for the known
observations to improve its entire fit of the lactation curve.

Finally, Table 2.5 shows the correlation between the SAE’s predictions and
true values of a milk yield that is generated a certain number of days after the end
of a given a window of available data. As expected, the correlations were largest
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Daily yield 305d yield

Days with
observed data

Sampling
rate RMSE MAPE R2 ρ RMSE MAPE R2 ρ

30 0.0 6.31 0.18 0.60 0.77 1171.17 0.10 0.67 0.82
30 0.3 6.40 0.18 0.58 0.77 1196.12 0.10 0.66 0.81
30 0.6 6.48 0.19 0.57 0.76 1231.51 0.10 0.64 0.80
60 0.0 5.90 0.17 0.61 0.79 929.50 0.08 0.79 0.90
60 0.3 5.92 0.18 0.61 0.79 928.90 0.08 0.79 0.90
60 0.6 6.16 0.19 0.58 0.78 1015.65 0.09 0.75 0.88
90 0.0 5.64 0.17 0.62 0.79 763.90 0.06 0.86 0.93
90 0.3 5.64 0.17 0.62 0.78 768.75 0.06 0.86 0.93
90 0.6 5.80 0.18 0.59 0.78 821.78 0.07 0.84 0.92

120 0.0 5.43 0.16 0.62 0.79 634.57 0.05 0.90 0.95
120 0.3 5.47 0.17 0.61 0.78 650.50 0.05 0.90 0.95
120 0.6 5.62 0.18 0.59 0.77 690.96 0.06 0.89 0.94
150 0.0 5.10 0.16 0.64 0.80 487.96 0.04 0.94 0.97
150 0.3 5.16 0.16 0.63 0.79 499.61 0.04 0.94 0.97
150 0.6 5.32 0.17 0.61 0.78 536.80 0.04 0.93 0.97
180 0.0 4.87 0.15 0.65 0.81 372.44 0.03 0.97 0.98
180 0.3 4.94 0.16 0.64 0.80 383.65 0.03 0.96 0.98
180 0.6 5.07 0.16 0.62 0.79 410.52 0.03 0.96 0.98
210 0.0 4.63 0.15 0.67 0.82 267.39 0.02 0.98 0.99
210 0.3 4.73 0.16 0.65 0.81 281.75 0.02 0.98 0.99
210 0.6 4.83 0.16 0.64 0.80 295.07 0.02 0.98 0.99
240 0.0 4.39 0.15 0.68 0.83 176.39 0.01 0.99 1.00
240 0.3 4.52 0.15 0.67 0.82 188.62 0.02 0.99 1.00
240 0.6 4.54 0.15 0.66 0.81 189.64 0.01 0.99 1.00
270 0.0 3.93 0.14 0.74 0.86 79.43 0.01 1.00 1.00
270 0.3 4.11 0.14 0.72 0.86 88.81 0.01 1.00 1.00
270 0.6 4.13 0.15 0.71 0.85 89.67 0.01 1.00 1.00

Table 2.4: SAE’s predictive performance for daily and 305d milk yield given different
windows of observed data

for yields closest to the end of the window of available data and decreased as the
forecast horizon increased. An average correlation of 0.83 was obtained for milk
yields 30 days in the future, while the correlation between true yield and predictions
made 60 days in advance was on average 0.78. For the largest possible forecast
horizon of 270 days, the SAE achieved 0.38 correlation between its predictions and
the true values.

2.4.3 Variable Importance

The variable importance scores for each group of features as well as each feature
individually are presented in Fig. 2.6. Fig. 2.6a shows that the parity was the
most discriminative feature with an average VI of 1.14, meaning that the SAE’s
total RMSE of 4.65 increased to 5.3 on average when the lactation number was
randomly permutated. With a VI close to 1.12, the herd statistics was the second
most informative feature group, with the herd’s average milk produced in the first
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Figure 2.5: Visualization of the SAE’s predictions for one observation in the test set for
different windows of available data. Purple dashed line = true milk yields, green dots =
observed milk yields, orange solid line = predicted milk yields

Number of days used for prediction
Forecast horizon 30 60 90 120 150 180 210 240 270

30 0.80 0.83 0.83 0.84 0.85 0.82 0.84 0.83 0.84
60 0.75 0.79 0.79 0.80 0.79 0.79 0.78 0.77
90 0.71 0.75 0.76 0.75 0.75 0.74 0.72

120 0.69 0.73 0.71 0.69 0.69 0.66
150 0.64 0.67 0.65 0.64 0.62
180 0.58 0.61 0.59 0.56
210 0.53 0.55 0.51
240 0.46 0.48
270 0.38

Table 2.5: SAE’s performance in terms of Pearson Correlation between predicted and
observed milk yields for different forecast horizons given different windows of observed data

305 days and 21 days as well as the herd’s total average produced milk being the
most discriminative variables as is shown by Fig. 2.6b. The average days in milk,
average days dry and average calving interval contributed the least to the SAE’s
reconstruction capacity within the herd feature group which can also be seen from
Fig. 2.6b. The events were the least informative group of variables with a VI score
of around 1.02, though this could be expected since this feature group was very
sparse.
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(a) VI feature groups (b) VI individual features

Figure 2.6: Variable importance

The impact of some features on the SAE’s predictions for a random test observa-
tion and a random window of available data is visualized by Fig. 2.7a, 2.7b, 2.7c and
2.7d. For a small number of recordings available in the beginning of the lactation
cycle, the SAE positively adjusted the lactation curve for every consecutive parity.
When mastitis was manually injected at the end of the window of 140 available
recordings, the SAE predicted lower future yields than if the cow were to be healthy.
Similarly, the SAE adjusted its predictions downwards when the disease event was
injected at the end of the window of 132 available recordings. Finally, for a window
of 120 available data points, the SAE adjusted the lactation curve upwards when
the observation’s initial normalized value of 0.7 for the herd’s average 305d milk
yield statistic was increased to its maximum value of 1.

2.5 Discussion

The R2 obtained by the SAE was 0.84 and was slightly higher than the R2 of
0.83 obtained by the MLP. An ANN similar to the MLP trained in this study was
proposed by Grzesiak et al. (2006) who reported an R2 of 0.77. Furthermore, Olori
et al. (1999) stated that an R2 > 0.70 implies a good model fit, while a model with
an R2 < 0.40 should not use for prediction. Hence, these results indicate a good
fit of the SAE and MLP models on the data. However, the SAE performed better
than the MLP on every individual imputation task. The MLP’s large errors for
the backtracking task can be explained by the fact that it only takes into account
lagged milk yields to infer a missing milk yield. The SAE on the other hand is
able to leverage every available observation recorded during the entire lactation
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cycle for inference. The SAE was therefore also better able to interpolate missing
values than to predict or backtrack entire parts of the lactation curve since both
past as well as future information could be exploited for interpolating missing
values. Nevertheless, the SAE still achieved reasonable results on the prediction
and backtracking tasks with correlations of 0.80 and 0.81 respectively. Hence these
results show the versatility of the SAE to infer missing yields, irrespective of the
pattern of missing observations along the lactation curve.

(a) Impact parity (b) Impact herd’s average 305d milk

(c) Impact mastitis (d) Impact disease

Figure 2.7: Visualization of variable impact on reconstruction of lactation curve

As expected, the predictive performance of the SAE increased as the forecast
horizon became shorter, which is showed in Table 2.5. The SAE’s correlation
between predictions and yields measured 30, 60 and 90 days after the first 30
recorded observations comprised 0.80, 0.75 and 0.71 respectively. These correla-
tions are higher than those obtained by Njubi et al. (2010) who reported correlations
of 0.75, 0.70 and 0.67 for the second, third and fourth predicted TD record by
making use of an MLP with the first TD as a predictor. Macciotta et al. (2002)
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and Vasconcelos et al. (2004) on the other hand achieved an average correlation
of 0.85 for the prediction of the next TD based on the previous TDs, while an
average correlation of 0.83 was found for the SAE’s predictions of milk yields 30
days in the future. These slightly smaller correlations obtained by the SAE can
be explained by the fact that the SAE is trained to perform well on multiple tasks
simultaneously, while the aforementioned two studies constructed models specifi-
cally designed to predict the next TD yield based on historical data. Furthermore,
instead of predicting TD yields which are measured every 30 days on average, the
SAE is able to generate predictions for every daily milk yield of the curve. This
facilitates improved monitoring systems since deviations from the expected milk
yield curve can be detected more rapidly. In addition, the time of prediction of
models which take lagged records into account increases linearly with the amount
of missing points in the lactation curve since each prediction is dependent on the
previously estimated values of the model. Instead of predicting the daily milk yields
sequentially however, the SAE generates a reconstruction of the entire lactation
curve at once. Likewise, curve fitting models such as proposed by Ali and Schaeffer
(1987); Ehrlich et al. (2011); Wilmink (1987); Wood (1967) also generate entire
lactation curves fitted to the data. However, Silvestre et al. (2006) found that these
lactation models heavily depend on the sampling properties of the input data, with
the accuracy quickly deteriorating as the amount of data decreased and the moment
of the initiation of data collection was delayed. More specifically, the correlations
between predicted and true yields obtained by Wood model decreased from 0.88
to 0.41 when the interval between calving and the first TD record was increased
from 30 days to 60 days, while the Ali model’s correlation decreased to 0.08 for
the same sampling property. When the frequency of sampling was decreased by a
factor of two on the other hand, the correlations decreased by a maximum of 0.04
for the Wood model and by a maximum of 0.09 for the Ali model. On the contrary,
the SAE’s correlation for every forecast horizon decreased by a maximum of 0.01
when 30% of the observations was randomly set to missing and by a maximum
of 0.02 when a sampling rate of 0.60 was applied. This demonstrates the SAE’s
robustness towards varying sampling properties. In addition, curve fitting models
are either fitted on lactation curves of homogeneous groups of animals or on each
lactation curve individually. In the former case, the estimated parameters describe
the group’s lactation cycle and do not take into account individual variations in the
lactation curve. In the latter case, one model is trained for every individual lactation
curve which makes it impossible to learn from patterns occurring across multiple
observations. The SAE on the other hand is a model trained on the entire dataset
and learned to extract a latent representation from a specific lactation curve and to
make a reconstruction by leveraging patterns learned from the entire population.

The results presented in Table 2.4 show that the SAE was able to predict the
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305d milk yields with high precision for different windows of available data. Many
previous studies also developed models to predict the 305d milk yield of a lactation
curve based on a couple of observed TD records. Grzesiak et al. (2003) for example
reported a prediction error of 6% by making use of a spline model with 4 TDs
recorded before the 118th day of lactation. Similar results were obtained by the
SAE with a MAPE of 5% for a window of 120 available observations. For a com-
parable window of available data, Dongre et al. (2012) achieved an R2 of 0.86 by
making use of an MLP, while an R2 of 0.90 was achieved by the SAE for 120 days
of data. The ANN proposed by Lacroix et al. (1995) achieved correlations of 0.897
and 0.963 when 115 and 210 observations were available, while correlations of
0.95 and 0.99 were obtained by the SAE for windows of equal size. By making use
of autoregressive models, Vasconcelos et al. (2004) reported correlations between
the predicted and true 305d milk yields of 0.85 and 0.94 for 2 and 4 available TDs,
while Macciotta et al. (2002) obtained correlations of 0.88 and 0.96 by applying an
autoregressive moving average model. The SAE on the other hand achieved corre-
lations of 0.90 when 60 days of data were available and 0.97 when 150 days of data
were available, regardless of the sampling rate. Hence, these results suggest that the
SAE is capable of achieving state-of-the art results with respect to predicting 305d
milk yields for different windows of available data. This can help farmers to more
accurately forecast a cow’s entire productivity which facilitates better selection and
culling decisions as well as more accurate estimates of future costs and revenues.
In addition, while most previous studies relied on a fixed number of observations
for predicting the cumulative milk yield, the results demonstrated the robustness of
the SAE’s 305d predictions with respect to varying samples of available recordings.
This can be of great value when variable lengths of time intervals exist between
different yield measurements or when missing observations are present.

Finally, as shown by Fig. 2.6, the parity feature contributed the most to the
SAE’s predictive capacity with a VI of 1.14. This is not surprising as dairy cows
generally produce more in each subsequent lactation cycle (Ehrlich et al., 2011;
Macciotta et al., 2011). This is also demonstrated by Fig. 2.7a which shows how the
SAE positively adjusts its predictions for higher parities. Furthermore, the results
presented in this research are also in line with those found by other studies in that
the quality of herd management expressed by statistics such as average milk yield
production has a positive impact on a cow’s milk production (Jeretina et al., 2015;
Lacroix et al., 1995). A loss in milk on the other hand can be expected in case of
illness such as mastitis (Adriaens et al., 2018). As shown by Fig. 2.7c and 2.7d, the
SAE learned to detect these patterns and lowered its forecasted milk yields when the
cow was exposed to mastitis or another disease. Hence, by incorporating a cow’s
sequence of reproduction and health events, more realistic milk yield predictions
are made by the SAE and allows for more accurate forecasts of the farm’s total
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production. Additionally, the model presented in this study facilitates improved
animal monitoring systems as it enables a more accurate comparison between an
animal’s expected and true lactation curve.

2.6 Conclusion
Many lactation models currently exist to forecast the missing milk yields along the
lactation curve of a cow (Macciotta et al., 2011, 2005; Zhang et al., 2016). Most of
these models however, assume that the estimation of a specific point in the lactation
curve depends on a fixed number of previously measured milk yields with constant
time intervals between each recording. Yet, common environmental factors such as
herd management, weather and nutrition as well as the animal’s repeatability result
in covariances between a specific milk yield and its preceding as well as subsequent
recordings. Furthermore, due to animal treatment and defective recording machines,
missing observations can occur and variable lengths of intervals may exists between
the different measurements. In this study, we propose a model that infers a missing
milk yield along the lactation curve by leveraging a latent representation of all
information available in the lactation cycle. As a result, a missing milk yield is
inferred by all the observations recorded before and after the moment of prediction,
irrespective of the length of the time interval between these recordings. Results
showed that the quality of the model’s encodings increased when the recorded milk
yields were augmented with the parity and herd statistics as well as the health and
reproduction events encountered by the cow during the lactation cycle. Furthermore,
the model was able to accurately predict missing milk yields for different windows
of available data, regardless of the sampling properties. Hence, the model presented
in this study can be used to predict and interpolate missing milk yields along
the lactation curve. In addition, the model is able to assess the impact of herd
management and events such as mastitis on the cow’s productivity. As a result, this
framework allows the farmer to obtain more accurate forecasts on its production as
well as costs and facilitates more enhanced animal monitoring systems.
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3
Predicting the milk yield curve of dairy
cows in the subsequent lactation period

using deep learning1

3.1 Abstract

Existing lactation models predict milk yields based on a fixed amount of observed
milk production in early lactation. In contrast, this study proposes a model to
predict the entire lactation curve of dairy cows by leveraging historical milk yield
information observed in the preceding cycle. More specifically, we present a deep
learning framework to encode the model inputs, predict the latent representation of
the milk yield sequences and generate the corresponding lactation curves. Results
show that the proposed framework outperforms the baseline models and that during
the first 26 days of lactation, the model’s predictions are more accurate than
those of a state-of-the-art lactation model which is able to leverage the observed
milk yields. As a result, the framework presented in this study allows farmers to
increase their forecast horizon with respect to predicting its herd’s total production
and hence facilitates optimal herd management. Additionally, the model can be
used to compare a cow’s actual and expected milk yield over the entire course
of the lactation cycle. This in turn can help to accelerate disease detection and

1Based on: Liseune, A., Salamone, M., Van den Poel, D., Van Ranst, B., & Hostens, M. (2021).
Predicting the milk yield curve of dairy cows in the subsequent lactation period using deep learning.
Journal of Computers and Electronics in Dairy Science.
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enhance current animal monitoring systems. Finally, as the model incorporates the
impact of health and reproduction events as well as herd management on the cow’s
productivity, future earnings and costs can be estimated more accurately.

3.2 Introduction

Forecasting milk yield is an important asset for dairy farmers as it can lead to
improved decision making for optimal herd management (Dematawewa et al., 2007;
Grzesiak et al., 2006). In particular, lactation models help to forecast the dairy
farm’s income (Ehrlich et al., 2011; Grzesiak et al., 2003b), determine the required
nutrition and energy consumption (Murphy et al., 2014), optimize selection and
culling decisions (Njubi et al., 2010; Sharma et al., 2006) and enhance animal
monitoring systems (Adriaens et al., 2018; Silvestre et al., 2006).

Early lactation models were determined by mathematical functions describing
the general milk yield pattern of homogeneous groups of animals (Brody et al.,
1923). Lactation was modeled as a function of time with an increasing phase until a
peak yield, followed by a more steady decline (Olori et al., 1999). Several mathe-
matical functions have been widely used for predicting dairy milk yields, including
an incomplete gamma, (Wood, 1967), a polynomial (Ali and Schaeffer, 1987), an
exponential (Wilmink, 1987) and a Legendre polynomial (Kirkpatrick et al., 1994).
Over time, the need to model individual variations from the mean lactation curve
increased as more animal records were collected and farm management software
improved (Macciotta et al., 2011). This led to several authors developing new
models in order to fit more complex shapes and to include more input features
(Murphy et al., 2018). For example, Grzesiak et al. (2003a) presented a multivariate
regression model (MLR) that in addition to days in milk, also used test-day (TD)
records, month of calving and the percentage of Holstein-Friesian (HF) genes as
features to predict the 305d milk yield. Vasconcelos et al. (2004) and Macciotta
et al. (2002) proposed autoregressive (AR) models in order to predict a milk yield
based on a sequence of preceding TD records. Græsbøll et al. (2016) on the other
hand presented a robust prediction model for cow level milk yield using lactation
curves with reduced number of parameters, which is useful in case of sparse data.

Later, several artificial neural networks (ANN) have been proposed to predict
milk yield. Lacroix et al. (1995) trained the first successful multilayer perceptron
model (MLP) to predict the 305d yield based on 16 variables. In subsequent stud-
ies, this model was improved by applying more sophisticated data preprocessing
techniques (Lacroix et al., 1997) and by training multiple networks each assigned
to make specific predictions (Salehi et al., 1998). Furthermore, MLPs have been
used to predict the 305d milk yield (Gorgulu, 2012; Grzesiak et al., 2003a), the
305d milk yield of the first lactation (Njubi et al., 2010; Sharma et al., 2006, 2007),
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the daily milk yield (Grzesiak et al., 2006; Torres et al., 2005) and dairy herd’s
total production (Murphy et al., 2014; Sanzogni and Kerr, 2001). In contrast to
MLPs, recent research has shown that convolutional neural networks (CNN), most
commonly applied for processing image data, can also be of great value for time
series analysis (Zhao et al., 2017; Zheng et al., 2014). This was also shown in
Chapter 2 that presented a sequential autoencoder (SAE) to interpolate as well as
predict missing milk yields along the entire lactation cycle by leveraging a latent
representation of all the information available in the lactation cycle.

With the advent of individual curve fitting models, animal monitoring systems
improved significantly. More specifically, by comparing a cow’s expected and
actual milk yield, diseases such as mastitis and ketosis could be detected more
accurately (Adriaens et al., 2018; Grzesiak et al., 2003a). Such early detection
systems are very valuable for the farmer since there can be a lot of costs associated
with diseases of dairy cattle, e.g. lower production, discarded milk, treatment
and culling or death (Gröhn et al., 2004; Wilson et al., 2004). Furthermore, the
knowledge of the expected lactation curve made it easier to assess the impact of
different treatments (Tekerli et al., 2000). However, in order to infer the expected
lactation curve to which the actual milk yield can be compared, an initial number of
milk yields recorded in early lactation is generally required. As a result, a reliable
reference in early lactation is often unavailable which makes herd management as
well as health monitoring of dairy cows particularly difficult in the period immedi-
ately after calving.

In this research, we propose a novel methodology to predict the entire lactation
curve of a cow. More specifically, this paper contributes to previous research in
multiple ways. Firstly, we present a model that predicts a lactation curve by using
the sequence of milk yields generated in the preceding cycle. Moreover, instead of
using the raw sequence of milk yields, the corresponding latent representation is
used in order to disentangle the sequential information and to reduce the feature
dimensionality. Secondly, we formulate a framework that models the impact of
animal and herd Key Performance Indicators (KPI), lactation number and the se-
quence of health and reproduction events the cow encountered during the preceding
cycle on the milk production. Finally, a new prediction approach is presented that
generates the entire lactation curve non-sequentially. In particular, an MLP is used
to generate the curve’s latent encoding which is subsequently converted back into
its corresponding milk yield sequence. The predictions obtained by the proposed
model can be used to calculate the milk losses immediately after calving and hence
support animal monitoring systems. In addition, the framework enables farmers to
increase their forecast horizon with respect to the farm’s future profitability.
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3.3 Materials and Methods

3.3.1 Data

The same data as described in Chapter 2 2.3.1 was used for this study. In addi-
tion to the features defined in Chapter 2 2.3.1, two more sets of features were
constructed for this study. For each lactation, several animal KPIs were calculated
and by averaging the milk yields of the entire herd per parity, the average lactation
curve per herd and per parity was obtained. The final dataset was constructed
by extracting every available pair of consecutive lactation cycles and therefore
exclusively consisted of data on cows with at least 2 lactation cycles. This resulted
in a total of 23745 observations, with each observation’s dependent variable com-
prising the sequence of milk yields generated in the predicted lactation cycle. The
features included the sequence of milk yields, animal KPIs and events generated in
the preceding cycle together with the lactation number, herd KPIs and the herd’s
average lactation curve corresponding to the predicted lactation cycle. Milk yields
and events recorded after 305 days in lactation were removed and days on which
no events occurred were represented by a special PAD token. Events that did occur
in the validation or test set but not in the training set were labeled as UNKNOWN
and were considered as a rare but unknown event. The animal and herd KPIs
were normalized between 0 and 1 and missing values were imputed with the mean
value of the variable. From the entire collection of observations containing no
missing milk yields in the predicted period, 2000 randomly sampled observations
were assigned to the validation set and 2000 randomly sampled observations were
assigned to the test set. The remaining observations with complete information in
the predicted period were assigned to the training set together with the collection of
observations containing missing milk yields in the predicted lactation cycle. An
overview of all the variables used in this study is given in Table 3.1.

3.3.2 Feature Extraction

In general, MLP’s are used to generate predictions for static input data. When the in-
put data contains sequential or spatial data, however, other specialized architectures
such as LSTMs or CNNs are first used to extract one-dimensional representations
of the non-static data. The obtained static feature vectors are then passed to an
MLP which generates the final predictions. This study uses a combination of
sequential and static features. Therefore, different feature extraction techniques are
used before passing the features to the final classification model. In the following
sections, we discuss the different techniques used to preprocess the input data.
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Variable Group Lactation Cycle Dimension Variable Name

Milk Yields Preceding 1 x 305
Preceding Milk Yield

Milk Yields Predicted 1 x 305
Predicted Milk Yield

Herd Yields Predicted 1 x 305
Avg Milk Yield Per Herd Per Parity

Herd KPIs Predicted 10 x 1
Avg 21d Milk
Avg 75d Milk
Avg 305d Milk
Avg Milk
Avg Days Dry
Avg Days Open
Avg Days Pregnant
Avg Days In Milk
Avg Calving Interval
Avg Quality Sequence

Animal KPIs Preceding 13 x 1
Age At First Calving
Age At First Insemination
Days Pregnant
Days In Milk
Minimum Milk Yield
Maximum Milk Yield
Total Milk Yield
305d Milk Yield
75d Milk Yield
21d Milk Yield
Avg Milk
Std Milk
Quality Sequence

Events Preceding 1 x 305
Mastitis
Abort
Breeding
Stop Breeding
Pregnancy Negative
Pregnancy Positive
Calving
Disease
Died
Heat
Cull
Dryoff
PAD
UNKNOWN

Parity Predicted 1 x 1
Lactation Number

Table 3.1: Variables used in this study. Lactation Cycle = the cycle from which the data was
obtained. Dimension = the number of features belonging to the feature group and the number of
time steps at which the features were measured.

3.3.2.1 Convolutional Neural Network

Generally, a CNN’s architecture exists out of a sequence of blocks, with each block
typically comprising a convolutional layer, followed by a non-linear activation
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function for feature extraction. Pooling layers on the other hand are specifically
designed for reducing the dimensionality of the hidden representation and making
the network invariant to small translations in the input by obtaining the most
prominent features. Fig. 3.1 gives an example of how a CNN with one convolutional
block is applied on a sequence with S time steps and N features at each time step.
A kernel of length K < S and width N is slided over the entire input sequence and
the dot products between the entries of the kernel and the input at any position are
calculated. By sliding more than one kernel over the input sequence, multiple one-
dimensional sequences are produced, with the elements of the sequences containing
the response values of the corresponding kernels at every time step. Subsequently,
an element-wise non-linear activation function is applied, followed by a pooling
layer which summarizes the feature response in a certain time window. Finally, the
output of the pooling layer is flattened and results in a vector that represents all
the features extracted by every kernel at every time step and hence can be used for
upstream tasks.

!1

Figure 3.1: Convolutional neural netowork for time series (Liseune et al., 2020)

In this study, a similar architecture was applied on the sequence comprising the
M last reproduction and health events encountered by the cow in the preceding
lactation cycle. Before feeding the events directly to the CNN however, an em-
bedding matrix of size 14 x k was used to convert each possible event occuring
in the sequence into its corresponding numeric vector. Hence, the sequence of M
events was converted to a M x k sequence with each time step of the sequence
containing the corresponding event’s embedding. In order to find the optimal event
representations, the values of the embedding matrix were considered as network
parameters and were updated during training. The sequences of embedding vectors
were passed to a CNN of which each block consisted out of a linear transformation
followed by a batch normalization layer. This layer normalizes the hidden acti-
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vations and supports faster training as well as regularization (Ioffe and Szegedy,
2015). More specifically, if X represents a batch of hidden activations of a certain
layer, then the normalization can be obtained as follows:

X̂ =
X− µ

σ

with µ and σ being the activation’s means and standard deviations respectively. The
output of the batch normalization layer can then be calculated as follows:

y = γX̂+ β

with γ and β being trainable parameters. Subsequently, a Leaky ReLU activation
function was applied and is defined as follows:

f = max(αx,x)

with α often being set at a small constant value. As a result, the Leaky ReLU
function will produce positive gradients for its entire range and hence facilitates
gradient-based optimization. In addition, a dropout layer was applied to the output
of the non-linear activation. With this mechanism, each neuron is dropped from
the network with a certain probability and hence enforces the neurons to perform
well, regardless of which other neurons are present in the network (Hinton et al.,
2012). Dimensionality reduction of the hidden representation was obtained by
applying max pooling layers which extract the most activated presence of a feature
in a specific time interval. The last convolutional block’s output was flattened and
resulted in the static feature representation of the sequence of events.

3.3.2.2 SAE Encoder

The sequential autoencoder (SAE), as presented in Chapter 2, is an artificial neural
network (ANN) specifically designed to infer missing milk yields along the lactation
curve. More specifically, the SAE comprises a CNN which is used to transform
the lactation cycle’s sequential information into an extensive set of time-dependent
features. A neural autoencoder then extracts a latent representation from the
lactation curve and uses this encoding to get a reconstruction of the input features.
Finally, a deconvolutional neural network (DNN) converts the reconstructed features
back into the corresponding sequence of milk yields. As a result, the SAE is able
to infer missing milk yields by making use of all the information available in a
lactation cycle, irrespective of the length of the time intervals between the different
observations. In Fig. 3.2, a schematic overview of the SAE is given. The SAE’s
encoder, which comprises the CNN and the autoencoder’s compression side, takes
an incomplete milk yield curve as input and extracts a latent representation from
this curve. Subsequently, the autoencoder’s reconstruction side and DNN (i.e., the
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SAE’s decoder) convert the latent representation back into the reconstruction of the
milk yield curve. In this study, the SAE was used to impute missing values along
the milk yield curves of the preceding lactation cycles. The reconstructed lactation
curve however is large in dimensionality and needs to be processed sequentially.
Hence, instead of applying the entire SAE’s architecture, the output of the SAE’s
encoder was used. This output comprises the latent representation of the lactation
curve and hence entails its most prominent traits in a low-dimensional vector.
Likewise, the SAE’s encoder was applied to convert the herd’s average lactation
curve per parity into its low-dimensional representation.

!1

SAE Encoder SAE Decoder

Incomplete Milk Yield Curve Completed Milk Yield Curve

Latent Representation

Figure 3.2: Schematic overview of the SAE

3.3.3 Milk Yield Prediction

In order to predict the lactation curve of the predicted lactation cycle, a standard
MLP was used. In this study, each hidden layer comprised a linear transformation
followed by a batch normalization layer, a Leaky ReLU function and a dropout
layer. The MLP’s inputs comprised the latent representation of the preceding
and the herd’s average milk yield sequence as well as the processed sequence of
health and reproduction events, the animal and herd KPIs and the lactation number.
Instead of predicting the entire sequence of milk yields however, the MLP’s output
was constrained to be of the same dimensionality as that of the latent encoding
generated by the SAE’s encoder. This vector was then fed to the SAE’s decoder,
which generated the reconstruction of the corresponding lactation curve. As a result,
the MLP was trained to predict the lactation curve’s latent encoding, rather than
the entire sequence which would be time-consuming and prone to overfitting. The
combination of all the different model components to forecast the lactation curve
resulted in the Subsequent Lactation Milk Yield Predictor (SLMYP). A schematic
overview of the SLMYP is depicted by Fig. 3.3.

3.3.4 Training

The entire SLMYP model was trained by making use of the backpropagation
algorithm, firstly introduced by Rumelhart et al. (1986). More specifically, the
inputs were first propagated through the entire network to produce a lactation
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Figure 3.3: Schematic overview of the SLMYP

curve. A loss between the model’s predicted and true lactation curve was then
calculated and the gradient of the loss function was propagated backward through
the network. The weights were then updated by applying the Adam gradient-based
optimization algorithm (Kingma and Ba, 2014). In order to avoid overfitting,
an early stopping procedure was applied in which the model was trained until
its performance on the validation set started to degrade. Furthermore, as neural
networks are typically characterized by a large range of possible configurations, a
Bayesian optimization procedure was applied to find the optimal hyperparameter
setting. More specifically, once the early stopping procedure was terminated,
the next configuration was determined by a trade-off between the exploration of
a parameter setting with uncertain results against the exploitation of a point in
parameter space with high model performance. In addition to the hyperparameters
defining the CNN’s and MLP’s model architecture, the inclusion of all the model
inputs except for the preceding lactation curve were also set as hyperparameter in
order to obtain only those features with a significant predictive power. Furthermore,
a boolean hyperparameter was included that determined whether the data should
be balanced with respect to the lactation number. In the case of data balancing,
observations with rare lactation numbers corresponding to the predicted lactation
cycles were upsampled during training such that each training batch consisted out
of an equal number of observations per lactation number. Finally, each model was
trained with one out of three possible loss functions which weighted each daily
prediction in the predicted period differently. A uniform loss assigned the same
weight to each daily prediction such that the resulting model tried to fit each milk
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yield of the lactation curve equally well. In order to solely focus on generating
predictions during the period for which current lactation models generally lack
predictions, a step loss was used that assigned a uniform weight to the first 30
predictions of the predicted period while disregarding later days. This resulted in
a model that was trained to approximate milk yields in early lactation as best as
possible, while ignoring the predictive accuracy in the period after early lactation.
Finally, a logarithmic loss assigned weights to every milk yield in the lactation
curve, but with a lower weight for each subsequent milk yield. As a result, the model
trained with the logarithmic loss function was particularly focused on generating
accurate predictions in early lactation, yet without ignoring the predictions made
for the remaining part of the lactation cycle. The weights used by each loss function
are depicted by Fig. 3.4.
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Figure 3.4: Loss functions

3.3.5 Benchmark Models

The SLMYP was compared with four models used to predict the lactation curves of
future cycles with no recordings. The first benchmark model uses the milk yields
generated in the preceding cycle as forecast. A second model approximates the
lactation curve by the herd’s average milk yield curve corresponding to the predicted
period. Third, a Wood’s curve was fitted on the lactation data for each distinct parity.
The predictions were then generated by the Wood’s curve corresponding to the
parity of the predicted lactation cycle. Furthermore, the SLMYP’s predictions were
also compared with the predictions generated by the SAE for increasing windows
of observed milk yields in the predicted period.

3.3.6 Model Evaluation

The performance of the models were evaluated by four metrics frequently used
in similar research: the Pearson correlation coefficient (ρ), the root mean squared
error (RMSE), the mean absolute error (MAE) and the mean absolute percentage
error (MAPE) (Grzesiak et al., 2003b; Lacroix et al., 1995; Liseune et al., 2020). In
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contrast to the MAE and RMSE, which are absolute measures of fit, the MAPE is
not scale dependent and indicates how much the predictions deviate from the true
values on average. It is defined by the following formula:

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

× 100%

3.3.7 Variable Importance

The variable importance (VI) score measures the relative increase of the model’s
error for a random perturbation of a specific feature (Breiman, 2001). More specifi-
cally, if e is the error of the model using all the features and ẽk,i is the error of the
model for the ith random perturbation of feature k, then the VI of feature k can be
calculated as follows:

V Ik =
1

n

n∑
i=1

ẽk,i
e

Likewise, the relative increase of the model’s error and hence the VI score for an
entire feature group can be calculated by randomizing all the features belonging to
that feature group.

3.3.8 Programming Tools

All data processing and analyses were done in the same environment as described
in Chapter 2 2.3.6.

3.4 Results

3.4.1 Model Selection

The Bayesian optimization procedure was initialized by evaluating 50 randomly
sampled model configurations. Each parameter setting was evaluated on the vali-
dation set after every 1000 training iterations with a batch size of 32. Every time
the validation RMSE decreased, the model’s weights were saved and training was
terminated when the performance did not improve for 10 consecutive times. The
best performing model was retrained on the training and validation set and evaluated
on the test set. This model included the lactation number, the latent representation
of the herd’s average milk yield curve, the animal and herd KPIs as well as the
sequence of the last 300 health and reproductions events encountered by the cow
in the preceding lactation cycle. The events were embedded into 5-dimensional
vectors and were passed to the CNN which consisted out of 4 blocks with 16 and
32 kernels of size 3 in the first two and last two blocks respectively. The output
of each block’s non-linear activation was dropped with a probability of 0.5 and
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a max pooling layer of size 4 was applied in block 1 and 4. The MLP contained
2 layers with 100 and 50 neurons and a dropout probability of 0.2 in each layer.
The α of the Leaky ReLU layers in both the CNN and MLP was 0.5 and the initial
learning rate of the Adam optimization algorithm was set at 0.001. Furthermore,
the best results were obtained when the training data was balanced with respect to
the lactation number.

3.4.2 Model Performance

The predictive performance on the daily as well as 305d yield of the SLMYP
trained with the uniform loss function and the baseline models on the test set is
depicted in Table 3.2. For the daily yields, the metrics were obtained by taking
into account the errors between the non-missing milk yields in the predicted period
and the corresponding model predictions. The performance scores for the 305d
yields were obtained by comparing the true 305d milk yield with the predicted 305d
yield (i.e., the summation of all the predicted yields in a certain cycle). The worst
performing baseline model was the Wood’s model, with an average MAE and a
MAPE of 9.58 kg and 30% for the daily milk yield and 2338.56 kg and 18% for
the 305d yield, respectively. Using the average curves per herd and per parity as
predictions on the other hand resulted in a RMSE of 7.97 kg and a MAPE of 25%
for the daily predictions. The SLMYP performed best on the daily as well as 305d
yield predictions with respect to every metric. On average, the SLMYP’s RMSE
between the daily milk yield predictions and the true values comprised 7.38 kg. For
the 305d milk yield, the prediction error obtained by the SLMYP was 11% and
was 2 percentage points lower than the best performing baseline model. Fig. 3.5
visualizes the predictions made by the baseline models as well as by the SLMYP
for two random examples from the test set. Fig. 3.5a shows how the SLMYP is
better able to model the peak of the lactation curve compared to the predictions
made by the baseline models. Fig. 3.5b on the other hand shows that in contrast to
the baseline models, the SLMYP is able to predict lower milk yield returns than
expected.

The impact of the different loss functions on the SLMYP’s performance for
different forecasting windows is displayed in Table 3.3. As expected, the SLMYP
trained with the step loss function achieved the lowest MAE for the first recorded
milk yields in the predicted lactation cycle. In particular, by applying the step loss
function, the MAE was 5.57 kg for the first week of lactation and 5.67 kg for the
first month of lactation. For larger windows however, the performance obtained by
the step loss started to decrease rapidly, with the MAE being 6.81 kg for the first
60 days and 10.05 kg for the entire lactation cycle. In contrast, the MAE of the
SLMYP trained with the uniform and logarithmic weights never exceeded 6.0 kg
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Daily yield 305d yield

Model RMSE MAE MAPE ρ RMSE MAE MAPE ρ

Baseline 1 9.22 7.13 0.26 0.62 2071.33 1081.01 0.16 0.61
Baseline 2 7.97 6.21 0.25 0.70 1705.09 1346.82 0.13 0.61
Baseline 3 9.58 7.67 0.30 0.53 2338.56 1887.68 0.18 0.18
SLMYP 7.38 5.58 0.23 0.75 1448.95 1093.30 0.11 0.73

Table 3.2: Performance on daily as well as 305d yield of the SLMYP and baseline models.
Baseline 1 = lactation curve of preceding cycle, Baseline 2 = average lactation per herd per
parity, Baseline 3 = Wood’s curve

(a) (b)

Figure 3.5: Visualization of SLMYP and baseline predictions for two random examples of
test set

for every possible window. Furthermore, the model trained with the logarithmic
loss function performed better than the model trained with the uniform loss weights
for the first 180 days of lactation. For larger windows, both models performed
equally well except for the largest possible forecasting window in which the model
with the uniform loss achieved the best results overall.

Furthermore, the performance of the SLMYP trained with the logarithmic loss
function as well as the best performing baseline model was compared with the SAE
presented in Chapter 2 during the predicted period. More specifically, Fig. 3.6
compares the SAE’s predictions for increasing windows of observed milk yields in
the predicted period with the SLMYP’s predictions made in the preceding cycle.
For each possible window of observed yields, the performance of both models was
calculated for the remaining unknown part of the lactation curve. As expected, the
SAE’s daily as well as 305d predictions deviated a lot from the true values in the
beginning of the lactation cycle but became more accurate as more milk yields were
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Forecast horizon

Loss 7 14 21 30 60 90 120 150 180 210 240 270 300

Uniform 5.67 5.58 5.63 5.72 5.82 5.78 5.74 5.71 5.68 5.65 5.62 5.59 5.58
Logarithmic 5.58 5.50 5.56 5.67 5.79 5.76 5.73 5.70 5.67 5.65 5.62 5.59 5.59
Step 5.57 5.49 5.56 5.67 6.81 9.75 10.02 10.07 9.99 9.89 9.87 9.91 10.05

Table 3.3: Performance of SLMYP trained with different loss functions for multiple forecast
horizons in terms of MAE (kg)

observed. More specifically, the SAE’s MAPE for the daily predictions decreased
from 30% when no observations were available to 23% when 20 milk yields were
recorded. On the contrary, the MAPE of the SLMYP remained below 23% for the
first 20 days of lactation. However, as the beginning of the forecasting window was
shifted towards the end of the lactation period, the MAPE of the SLMYP for the
daily yields increased gradually as the MAE remains more or less constant while the
average milk yield becomes smaller towards the end of the lactation cycle. From 26
days onwards, the SAE outperformed the SLMYP in terms of MAPE by leveraging
the observed data. On the other hand, the MAPE of the best performing baseline
model that predicted a subsequent lactation curve as the herd’s average milk yield
per parity was already surpassed by the SAE after 9 days of observed data. For
the 305d predictions, the performance of the SAE, SLMYP and baseline model
increased for larger windows of recorded milk yields as the predicted 305d yield
comprises the cumulative predicted yield as well as the cumulative observed yield.
Yet, in this case, the SAE’s performance surpassed the baseline model already at
the 4th day of lactation while it surpassed SLMYP’s performance at the 20th day
of lactation, with the MAPE of both models being around 11% at that day.

3.4.3 Variable Importance

The variable importance scores of each group of features are visualized in Fig. 3.7.
The latent representation of the average milk yield curve per herd and per parity had
the highest VI of 1.47, meaning that the SLMYP’s total RMSE of 7.38 kg increased
to 10.84 kg when the latent features were randomly permutated. The animal KPIs
and latent representation of the previous lactation curve were the second and third
most discriminative feature groups with VI scores of 1.08. The least discriminative
feature group were the herd KPIs with a VI score of 1.02.

The impact of several features on the SLMYP’s predictions for a random test



3.4. RESULTS 63

9 26 40 60 80
Days with observed data

0.22

0.24

0.26

0.28

0.30

M
AP

E

SAE
Baseline
SMLYP

(a) Daily performance

4 20 40 60 80
Days with observed data

0.06

0.08

0.10

0.12

0.14

M
AP

E

SAE
Baseline
SMLYP

(b) 305d performance

Figure 3.6: Daily and 305d milk yield performance of the SAE, SLMYP and baseline
models for different windows of observed data in the predicted period
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Figure 3.7: Variable importance scores of feature groups

observation are depicted by Fig. 3.8. When mastitis was manually injected at the
170th day of the previous lactation cycle, the SLMYP predicted a slightly lower milk
production than when the cow would be healthy. Likewise, the SLMYP adjusted the
milk yield curve downwards when the disease event was injected at the 174th day
of the previous lactation cycle. For each consecutive parity, the SLMYP predicted
a slightly lower milk yield curve for a fixed lactation curve in the preceding cycle.
When one of the latent variables of the low-dimensional representation of the
previous lactation curve that was related to the cow’s persistency was increased
to its maximum value of 1, a more gradual decline of the subsequent curve was
predicted as well. Finally, when the animal KPI corresponding to the 305d milk
yield was decreased to its minimum value of 0, the SLMYP predicted lower returns
for the entire lactation cycle. The milk yield curve was shifted upwards when the
herd KPI related to the average days open was set to its minimum value of 0.
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Figure 3.8: Variable Importance

3.5 Discussion

Overall, the SLMYP performed better than all the baseline models with an average
correlation of 0.75 between the predictions and the true values for the daily milk
yields. The SAE presented in Chapter 2 on the other hand, obtained a correlation
of 0.77 when 30 days of data were observed. Furthermore, the SLMYP made the
most accurate 305d milk yield forecasts with an average prediction error of 11%.
This error is slightly higher compared to the results found by Grzesiak et al. (2003a)
who reported a prediction error of 9% by making use of a spline model with one
test-day (TD) record observed during the first 28 days of lactation. By applying
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autoregressive models on 2 TD records observed in the first 2 months of lactation,
Macciotta et al. (2002); Vasconcelos et al. (2004) reported correlations between the
predicted and true 305d milk yields of 0.85 and 0.88 respectively. For a comparable
window of available data, the SAE proposed in Chapter 2 obtained an even higher
correlation of 0.90. On the contrary, the SLMYP achieved a correlation of 0.73
between the predicted and true 305d values. Yet, while the previously mentioned
studies leveraged data observed during early lactation, the SLMYP generates its
milk yield predictions before the start of lactation. As shown by Fig. 3.6, the
SLMYP was still able to produce better predictions for the daily milk yields than
the SAE until the 26th day of the lactation cycle. In terms of 305d milk yields,
the SLMYP generated better predictions than the SAE until the 20th day of the
lactation cycle. Hence, during the first 26 days of lactation, the SLMYP enables
farmers to obtain more accurate estimates of milk losses in early lactation and hence
facilitate animal monitoring systems. In addition, the model presented in this study
allows farmers to increase their forecast horizon with respect to their herd’s total
productivity with 20 days on average. After that period, predictions of lactation
models such as the SAE become more accurate as these model are able to leverage
the observed milk yields.

While no studies currently exist that predict the entire lactation curve by using
data obtained in the previous cycle, curve fitting models such as those proposed by
Ali and Schaeffer (1987); Wilmink (1987); Wood (1967) are able to make forecasts
for future cycles by fitting curves on lactation data of homogeneous groups of ani-
mals. The resulting parameters of the fitted curves thus describe the group’s average
production and hence do not incorporate historical information from individual
animals. The SLMYP however generates its predictions by taking into account
both group statistics as well as individual information regarding historical milk
production and reproduction as well as health events. In addition, Silvestre et al.
(2006) showed that the accuracy of curve fitting models heavily depends on the
sampling properties of the recorded milk yields. This is less a problem for SLMYP
as it uses the latent representation of the historical as well as the herd’s average
milk yield extracted by the SAE. More specifically, as was shown in Chapter 2, the
SAE’s MAPE for reconstructing the entire lactation curve decreased by a maximum
of 2 percentage points when 60% of the input milk yields were randomly dropped.
Using the latent representation instead of the raw milk yield sequences thus makes
the SLMYP particularly robust for missing data in the features corresponding to
the cow’s and herd’s lactation curves.

Finally, as shown by Fig. 3.7, the latent representation of the herd’s average
milk yield curve corresponding to the predicted lactation cycle contributed the
most to the predictions. This could be expected since cows from the same herd
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usually share the same breed, feeding systems, herd management and climate,
which have been shown to significantly affect milk production (Rekik and Gara,
2004). In addition to variables summarizing the average herd production, other
features related to herd management also had an impact on the milk production. In
Fig. 3.8f for example, the SLMYP increased its predictions for a lower value of the
average number of days open. This is not surprising as a delay in pregnancy will
inversely influence milk production (Cattaneo et al., 2015). In contrast to previous
studies which found that cows generally produced more in each subsequent lactation
cycle (Ehrlich et al., 2011; Macciotta et al., 2011), the SLMYP predicted lower
milk yield returns for higher parities. Yet, this could be explained by the fact that
the curves corresponding to the previous lactation cycle as well as to the herd’s
average lactation remained fixed and hence became abnormally low for higher
parities. Furthermore, the results presented in this research are in line with previous
studies in that a cow’s historical milk production is positively related to its future
production (Ali and Schaeffer, 1987). As shown by Fig. 3.8e and Fig. 3.8d, the
SLMYP lifted the predicted curve upwards as the total milk production of the
preceding cycle was increased or when the persistency of the preceding cycle was
positively adjusted. On the contrary, a loss in milk yield can be expected in case of
mastitis or disease (Adriaens et al., 2018). This was shown by Fig 3.8a and Fig 3.8b
in which the SLMYP slightly adjusted its predictions downwards when the cow
was sick during the preceding cycle. Hence, the SLMYP is able to generate more
realistic milk yield predictions by taking into account the sequence of reproduction
and health events. As a result, differences between expected and produced milk
yields can be calculated more accurately which improves disease detection.

3.6 Conclusion

Current lactation models rely on a fixed number of milk yields recorded in early
lactation to forecast individual milk yield curves. As a result, animal monitoring
becomes particularly difficult in early lactation as expected milk yields are often
missing in the period immediately after calving. In addition, forecasts of a cow’s
total productivity can only be obtained from the moment the model’s last required
milk yield input is observed. Curve fitting models on the other hand are able to
generate entire lactation curves. These curves however represent group averages
and hence remain constant irrespective of the animal’s individual variation. In this
study, we present a framework that, in addition to herd statistics, uses the cow’s
historical sequence of milk yields as well as reproduction and health events in the
preceding cycle to predict the cow’s entire lactation curve in the subsequent cycle.
Results show that by leveraging individual data, the model is able to generate more
accurate predictions than by solely using group averages. As a result, the framework
presented in this research can be used to assess the impact of herd management,
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health and reproduction events as well as a cow’s historical milk yield on the cow’s
future productivity. In addition, the model allows to increase the farmer’s forecast
horizon with respect to the herd’s future productivity as well as to improve animal
monitoring systems in early lactation.
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4
Leveraging sequential information from

multivariate behavioral sensor data to
predict the moment of calving in dairy

cattle using deep learning1

4.1 Abstract

Calving is one of the most critical moments during the life of a cow and their
calves. Timely supervision is therefore crucial for animal welfare as well as the
farm economics. In this study, we propose a framework to predict calving within
24h, 12h, 6h, 3h and 1h of dairy cows using sequential sensor data. In particular,
data were extracted from 2363 cows coming from 8 commercial farms between
August 2016 and November 2020. Two sensors attached to the neck and leg of each
cow measured rumination, eating, lying, standup, walking and inactive behavior
on a minute basis. A novel methodology was used to impute the missing values
in the sensor sequences by leveraging the observed values of all the behavioral
activities recorded by the sensors. A deep learning model was then used to predict
the moment of calving on an hourly basis using the imputed sensor sequences.

1Based on: Liseune, A., Van den Poel, D., Hut, P. R., Hostens, M., & van Eerdenburg, F. J.C.M.
(2021). Leveraging sequential information from multivariate behavioral sensor data to predict the
moment of calving in dairy cattle using deep learning. Journal of Computers and Electronics in Dairy
Science.
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Results show that for the 24h interval, the model achieves a Sensitivity of 65%
with a Precision of 77%, while for the 3h interval, the model achieves a Sensitivity
of 57% with a Precision of 49%. Moreover, we find that using the missing value
imputations significantly improves the predictive performance for observations
containing up to 60% of missing values. The framework proposed in this study
can be used by farmers to optimize their calving management and hence improve
animal monitoring.

4.2 Introduction

Calving is one of the most critical moments of both the cow’s and the calf’s life
(Barrier et al., 2013; Mee, 2013). Dystocia, i.e. difficulties or abnormalities en-
countered during calving, can severely affect health and welfare of dairy cattle
(Barrier and Haskell, 2011). In particular, dams that experience dystocia can be at
increased risk of injury as well as contracting uterine diseases such as metritis and
endometritis (Rutten et al., 2017). Moreover, it is reported that dystocia is one of
the most painful conditions for dairy cows (Laven et al., 2009). Dystocial calves
on the other hand can experience many physiological problems such as prolonged
hypoxia and significant acidosis (Lombard et al., 2007) as well as physiological
stress and internal injuries (Berglund et al., 2003). This in turn can reduce the
calf’s long-term survival or even result in stillbirth (Lombard et al., 2007). In fact,
7% of all the calves born in the United States die directly within 48 hours and
50% of the stillbirths can be directly attributed to dystocia (Meyer et al., 2000).
Difficulties with calving can therefore negatively affect animal welfare as well as
farm economics (Mee, 2004). Specifically, dystocia can be very costly to dairy
farmers as it is associated with a lower fertility, milk production and survival rate
of the dam (Tenhagen et al., 2007). Additionally, the need for veterinary assistance
contributes to the economic cost of dystocia. In particular, the total cost associated
with a difficult calving has been estimated at e500 (McGuirk et al., 2007). The
financial losses related to stillbirth even average $938 per case (Mahnani et al.,
2018). Reducing difficulties with calving is therefore crucial to the dairy producer.

Several risk factors causing dystocia include parity, calf weight, sex, body
size and pelvic diameters of the dam as well as seasonal effect and environmental
stress (Tenhagen et al., 2007). Yet, farm management such as breeding decisions
and human supervision can strongly influence calving difficulties as well (Rutten
et al., 2017; Van Pelt and de Jong, 2011). More specifically, it has been shown
that providing timely human intervention reduces the risk of dystocia, the pain
experienced during labor and the reproductive decline of the dam (Borchers et al.,
2017). Individual animal monitoring, however, becomes increasingly more difficult
as the number of cattle per farm globally increases over time (Raussi, 2003). In
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fact, even with intensive monitoring, it remains difficult to forecast the moment of
calving correctly (Lange et al., 2017). One way to organize human supervision more
efficiently is by employing models that are able to accurately predict the moment
of parturition. Such models can automatically alert farmers of an imminent calving
and hence facilitate timely calving supervision (Ouellet et al., 2016). Physical
and behavioral changes may provide clues to detect when cows are about to calve
(Huzzey et al., 2005). More specifically, it has been shown that behaviors such
as eating, rumination and grooming decrease, while restlessness and lying bouts
increase during the period around calving (Jensen, 2012; Miedema et al., 2011;
Schirmann et al., 2013). Visually assessing these behavioral changes, however,
is subjective, time consuming and prone to human error (Ouellet et al., 2016).
Several frameworks were, therefore, presented to predict the onset of calving by
automatically processing these changes in behavioral patterns. Ouellet et al. (2016),
for example, constructed three different models to predict the moment of calving
based on four calving indicators, i.e., vaginal temperature, rumination time, lying
time and lying bouts. More specifically, three logistic regression models were built
that predicted the start of parturition within 24h, 12h and 6h based on the optimal
combination of the four aforementioned indicators. Similarly, Fadul et al. (2017)
trained a logistic regression model with a stepwise selection procedure to predict
the onset of calving within the next 3 hours based on rumination time and chews,
lying bouts, boluses as well as other activities not related to ruminating, feed intake
or drinking. Whereas the two previously mentioned studies removed missing data,
all observations with missing values were assigned to the training set in the study
presented by Zehner et al. (2019). A Naive bayes model was then trained and evalu-
ated on a validation set, which exclusively consisted of observations with complete
information. Rutten et al. (2017) on the other hand, presented a methodology to
impute the missing values by a weighted average of sensor data recorded during
the previous three days at the same time period. A logistic regression model was
then trained on the imputed data to generate the calving predictions. Borchers et al.
(2017) applied more complicated machine learning techniques such as random
forests, linear discriminant analysis and neural networks to predict the start of
calving. The same dataset was used in a subsequent study conducted by Keceli
et al. (2020) who applied a Bidirectional Long Short-Term Memory (Bi-LSTM) to
process the data sequentially.

Yet, in most of the previously mentioned studies, the proposed frameworks
disentangle the temporal information in the sensor sequences. As result, these
models are not able to leverage the sequential patterns in the the behavioral changes,
which can negatively affect model performance. Additionally, the previously pre-
sented frameworks are difficult to generalize and may not be suitable for practical
applications. In particular, in most studies, observations with missing values are
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removed (Borchers et al., 2017; Fadul et al., 2017; Keceli et al., 2020; Ouellet et al.,
2016; Zehner et al., 2019). As a result, these models won’t be able to generate
reliable calving predictions when missing values are present in the observed sensor
sequences. In one study, however, missing values were imputed by the moving
averages of sensor recordings observed at previous time steps (Rutten et al., 2017).
Yet, in case of large periods with missing data, this approach will also not be able
to impute the missing values in a reliable way. Furthermore, all of the previously
mentioned studies were conducted on datasets with a limited number of recorded
calvings, mostly coming from one herd. Hence, the reported performance scores of
these models were obtained on very limited test observations and are thus difficult
to generalize towards calving events not observed in the data.

In order to fill this gap in literature, we present a framework that is generalizable
and suitable for practical implementations. More specifically, this study was con-
ducted on a large dataset containing sensor data coming from 2363 animals from 8
different herds (Hut et al., 2021). Additionally, we propose a novel methodology to
infer missing values by leveraging the values recorded by all the sensors. Finally,
we present a model that accurately predicts the moment of calving by sequentially
processing the multivariate sensor sequences. There are several reasons why we
believe that the proposed framework can be valuable for calving management. First,
human supervision for calving can be organized better as farmers are automatically
alerted when a cow goes into labor. This way, stock personnel does not need to
permanently supervise their cattle. Second, cow welfare can be drastically increased
as timely supervision significantly reduces the negative consequences of dystocia
(Borchers et al., 2017; Schuenemann et al., 2011, 2013; Szenci et al., 2012). Finally,
we propose a model that generates reliable predictions, irrespective of the data
quality of the recorded sensor data. This is a valuable tool as missing values and
outliers frequently occur in sensor sequences due to faulty data transmission or
malfunction of the sensors.

4.3 Materials and Methods

4.3.1 Data

For this study, data was collected from 2363 cows coming from 8 commercial dairy
farms with freestall barns in the Netherlands between August 2016 and November
2020. No external personnel was employed by the farms. From the 8 farms, 6 farms
were Holstein Friesian, 1 were Fleckvieh and 1 farm were crossbreeding Holstein
Friesian, Fleckvieh and Scandinavian Red. From the moment the Nedap infrasture
(Nedap, Groenlo, The Netherlands) was completely implemented at a farm, each
cow was equipped with the Nedap Smarttag Leg and Nedap Smarttag Neck sensor
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for the entire period of this study. The sensors were attached to the front legs and
the neck of the cow with the former recording the number of steps, standing time,
walking time and lying time and the latter recording the eating time, rumination
time and inactive time, i.e., time not spend eating and ruminating. Sensor data
was recorded every minute. Hourly as well as daily measurements were obtained
by summing all the values of each activity recorded during each hour and day
respectively. For the data aggregated on a daily basis, the data supplier provided
some additional features, e.g., the number of bouts, the average bout length as well
as the average length between different bouts for several activities. Additionally,
the parity, i.e. the number of different times a dam has had an offspring, and the
season of calving (summer, spring, autumn, winter) were provided for each calving
event. Table 4.1 shows the raw sensor recordings as well as the derived features on
an hourly and daily basis obtained from the data provider.

Activity 1h features 24h features

Walking minutes
minutes

Standing minutes
minutes
number of bouts

Eating minutes
minutes
number of bouts
avg bout minutes
avg inter bout minutes

Rumination minutes
minutes
number of bouts
avg bout minutes
avg inter bout minutes

Lying minutes
minutes
number of bouts
avg bout minutes

Inactivity minutes
minutes
number of bouts
avg bout minutes
avg inter bout minutes

Leg activity number of steps
number of steps

Table 4.1: The sensor activities and their corresponding features
recorded on an hourly and daily basis

The moment of calving was manually recorded by the farmer. In total, the day
of calving was registered for 3902 different calvings. For 572 of these calvings, the
exact timestamp was registered by the farmer at the moment the farmer visually
observed the parturition. In total, 159 calvings were registered in the morning (from
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6am to 12pm), 170 in the afternoon (from 12pm to 6pm), 178 in the evening (from
6pm to 12am) and 65 at night (from 12am to 6am). For each calving event, the daily
features observed during the 21 days before calving were extracted. For calving
events with an exact time stamp, the hourly sensor values were extracted from the
day before calving until the moment of parturition. The training, validation and
test set for the daily and hourly data were constructed by randomly sampling 60%,
20% and 20% of the daily and hourly calvings respectively. In order to extract
the features and labels of the daily calvings, a sliding window of 14 days was
shifted over the daily sequences by one day. This resulted in 8 observations for
each calving event, with one observation containing the sensor sequences observed
the day before calving, and 7 observations with sensor sequences observed 2 or
more days before calving. For calving events with an exact time stamp, a sliding
window of 24 hours was then shifted over the hourly sequences by one hour. A
graphical depiction of the validation setup and the sliding window procedure is
given by Fig. 4.1. In total, 31216 sequences of daily data Xd and 8275 sequences
of hourly data Xh were extracted. For the sensor data aggregated on a daily basis,
each observation Xd

i contained 14 recordings Xd
it

, with each recording comprising
19 sensor values. For the sensor data recorded on an hourly basis, every observation
Xh

i consisted of 24 recordings Xh
it

of 7 sensor values. Outliers were removed by
the median absolute deviation method (Leys et al., 2013). This method consists of
removing observations according to the absolute difference between the observation
and the median value. Hence, it is more robust for extreme outliers. In total,
4783 outlying sensor recordings were replaced by missing values, which comprises
0.3% of the data. After the removal of the outliers, sensor values were normalized
between 0 and 1. Table 4.2 gives an overview of the data used in this study.

Hourly Prediction Daily Prediction

Calving events 572 3902
Farms 8 8
Parity 1 110 782
Parity 2 148 927
Parity 3+ 314 2193
Recording interval 1h 24h
Sliding window size 24h 14d
Number of sequences 8275 31216
Features 7 19
Training size 4896 18728
Validation size 1721 6240
Test size 1658 6248

Table 4.2: Overview of data used in this study
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Figure 4.1: Schematic overview of validation setup and the sliding window procedure. Each
sequence containing the sensor data observed before a calving of a specific cow (gray
square) is randomly assigned to the training, validation or test set. A sliding window is then
applied to each sequence to produce observations with positive (green square) and negative
(red square) calving events.

4.3.2 Deep Learning Models

Mutlilayer Perceptron Models (MLP) are a type of neural networks and consist
of an input layer, one ore more hidden layers and an output layer. In each hidden
layer, every neuron is a linear combination of all the neurons from the previous
layer, followed by a non-linear activation function. In particular, if hj represents
the outputs of layer j, then the output of layer j + 1 can be calculated as follows:

hj+1 = f(hj ·Wj+1 + bj+1)

with Wj+1 and bj+1 being the weights matrix and biases corresponding to layer
j + 1, and f being a non-linear activation function, commonly a ReLU function.
The activation function of the final layer is generally a sigmoid, softmax or iden-
tity function, depending on whether the label is binary, multiclass or continuous
respectively. In general, MLPs are suitable for any supervised learning task. In
practice, however, MLPs are rarely used when temporal or spatial dependencies
exist among the features of the input data. Long Short-Term Memory Models
(LSTM) on the other hand, have been specifically designed to process time-series
data as they have recurrent connections between the different inputs (Hochreiter
and Schmidhuber, 1997). In particular, information from each time step t is fed to
an LSTM unit, which is composed out of four units: a memory cell ct, an input
gate it with the corresponding weight matrices W i

R, W i
I and bi, an output gate ot

with the corresponding weight matrices W o
R, W o

I and bo and a forget gate ft with
the corresponding weight matrices W f

R, W f
I and bf , as shown by the following
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equations:

it = σ(W i
Rht−1 +W i

Ixt + bi)

ft = σ(W f
Rht−1 +W f

I xt + bf )

ct = ct−1 ⊙ ft + it ⊙ tanh(W c
Rht−1 +W c

I xt + bc)

ot = σ(W o
Rht−1 +W o

I xt + bo)

ht = ot ⊙ tanh(ct)

where xt represents the observed features at the current time step, ht−1 represents
the output of the previous time step, ct−1 represents the cell state of the previous
time step and σ and tanh represent the sigmoid and hyperbolic tangent function
respectively. The memory cell ct stores information extracted from the previous
time steps and the gates determine the information flow between the cells. The
output at the last time step represents a compact summary of the entire observed
sequence. Sometimes, however, one LSTM layer is insufficient to compress all
the observed data into one single feature vector. In such cases, more informative
vectors can be obtained by stacking multiple LSTM layers on top of each other. In
contrast to LSTMs, Convolutional Neural Networks (CNN) were originally devel-
oped for computer vision applications (Krizhevsky et al., 2012; LeCun et al., 1998;
Szegedy et al., 2015). Lately, however, they have also shown great performance
on time series data as they can extract time-dependent features in parallel (Zhao
et al., 2017). In general, a CNN exists of multiple convolutional blocks, with each
block typically comprising a linear transformation and a non-linear activation stage
for feature extraction. In particular, for a time series with K features and T time
steps, a filter of size KxS with S < T is slided over the sequential data along
the time dimension. Each time the filter is shifted one position, the filter weights
are multiplied with the elements of the data that are covered by the filter at that
point. Subsequently, a non-linear activation function, such as ReLU, is applied
to the sum of the outputs of the multiplication and results in a new time series
of the features extracted by that filter. In order to downsample the output and
to make the model invariant to small translations in the input, a pooling stage or
strided convolution is used at some of the layers to summarize the presence of the
feature in every specific time window. By applying multiple convolutional blocks
and flattening the output of the last layer, a vector is obtained representing all the
features extracted from the input data. By altering the number of filters of the filter
size, or by adding convolutional blocks, the model can learn more complex patterns.
Finally, hybrid approaches are now also used to leverage the unique capabilities of
different models. C-LSTM models that combine CNNs with LSTMs for example,
have been successfully used to process time-series data (Alhussein et al., 2020; Pak
et al., 2018). In these architectures, a CNN first extracts a set of time-dependent
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features from the input data, while an LSTM then sequentially processes these
features and encodes them into a one-dimensional feature vector. The motivation to
use this kind of architecture is that the CNN is able to extract meaningful features
in parallel from the multivariate timeseries, while the LSTM can extract temporal
patterns from long-term sequences.

4.3.3 Missing Value Imputation

A major concern regarding the data quality of sensor data is the frequent occurrence
of missing values. Missing gaps in sensor sequences can occur due to several
reasons such as malfunction of the sensors and faulty transmission of data. One
way of dealing with missing values present in the data sequences is by imputation
by the mean, whereby the missing values of a certain feature are replaced by
the feature mean. For time series data, however, this often results in unrealistic
realizations of sequences, as the imputed value does not take into account the
values observed before or after the missing value (Liseune et al., 2020). In contrast,
linear and spline interpolation impute missing values by interpolating between
known data points. While the linear interpolant equals a straight line between
two known points, the spline interpolant is a piecewice polynomial fitted to a
small subset of known values. However, in case of a multivariate time series,
correlation may exist among the different sequential features, which can not be
leveraged by linear or spline interpolation. Hence, in addition to the three previously
mentioned imputation methods, a model was also built to impute the missing values
for each of the behavioral sequences (e.g. eating) based on the values observed
in that behavioral sequence as well as the values recorded in the other behavioral
sequences, hereinafter referred to as the dependent and independent sequential
features. More specifically, a CNN was used to obtain a one-dimensional vector
from the independent sequential features. In order to leverage the values that were
observed in the dependent sequential feature, the sequence was used as input as
well. During the training stage, observed values of the dependent sequential feature
were randomly set to missing to obtain a set of missing and true values. This vector
was then concatenated with the CNNs output and was subsequently fed to an MLP
which predicted the entire dependent sequential feature. Finally, the mean squared
error loss between the values of the dependent sequential feature that were set
to missing and the corresponding predictions was calculated and backpropagated
through the entire network. For each feature of the daily and hourly data, a missing
imputation model was trained and was used to impute all the missing values. An
example of how one particular sequential feature is imputed by a missing value
imputation model is given in Fig. 4.2.
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Figure 4.2: Schematic overview of the missing value imputation model

4.3.4 Predictive Models

In order to predict the moment of calving, two machine learning models and three
deep learning models were trained on the sensor data. For predicting the moment
of parturition within 24h, the sensor data aggregated on a daily basis Xd was used
as input. The hourly sensor data Xh was used to predict calving within 12h, 6h,
3h and 1h. For the machine learning models, the data was flattened to obtain non-
sequential observations. In particular, for the daily data Xd, each observation Xd

i

was flattened by concatenating each of the 14 recordings Xd
it

of 19 sensor values
into a one-dimensional vector: Xd

i11
, Xd

i12
, ..., Xd

i1419
. Likewise, the hourly data

was flattened by concatenating each observation’s recording into a one-dimensional
vector: Xh

i11
, Xh

i12
, ..., Xh

i247
. For every prediction window, each model was trained

on the imputed data as well as the raw data with the missing values. Like most of
the previous studies, a logistic regression model was trained on the flattened daily
and hourly sensor data as this model is not able to sequentially process the input
features. For the daily and hourly predictions, the logistic regression model can be
expressed as follows:

ydi =
1

1 + exp
−(β0+β1∗Xd

i11
+β2∗Xd

i12
+...+β266∗Xd

i1419
)

yhi =
1

1 + exp
−(β0+β1∗Xh

i11
+β2∗Xh

i12
+...+β168∗Xh

i247
)

with ydi being the predicted probability of calving the next day for observation
i of the daily data and yhi being the predicted probability of calving the next 1h,
3h, 6h or 12h for observation i of the hourly data. Additionally, a random forest
model was trained on the flattened data as this model does not assume a linear
decision boundary, unlike the logistic regression model. In contrast to the machine
learning models, three deep learning models that are able to sequentially process
the sensor data were used to predict calving. A CNN model was implemented
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by applying multiple convolutional layers on the time series data. In each layer,
several filters were shifted along the time dimension to extract different sets of time-
dependent features. Pooling stages were used to downsample the feature space. The
output of the last layer was flattened to obtain a vector comprising all the extracted
features. For the LSTM model, the sensor values observed at each time step were
processed sequentially by one or two LSTM layers. The output of the last LSTM
cell was used as a compact summary of all the observed sensor sequences. Finally,
the C-LSTM model comprised a CNN and LSTM unit, with the CNN extracting
several time-dependent feature vectors by applying multiple convolutional blocks,
and the LSTM processing these features sequentially and obtaining a compact
feature representation. The feature representations obtained by the LSTM, CNN
and C-LSTM models were passed to an MLP with a sigmoid activation function in
the final layer to predict the probability of calving. An overview of the three deep
learning models applied in this study are shown by Fig. 4.3
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Figure 4.3: Deep learning architectures used in this study
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4.3.5 Model Training

All the deep learning models were trained by using the backpropagation algorithm
(Rumelhart et al., 1986). In this algorithm, the gradient with respect to loss is
calculated and propagated through the network by using the chain rule. The Adam
gradient-based optimization algorithm was then used to update the weights (Kingma
and Ba, 2014). For the missing value imputation model, the mean squared error
between the values of the dependent sensor that were randomly set to missing and
the corresponding predictions was calculated and backpropagated through the entire
network. The negative log-likelihood between the predicted probabilities and the
true calving observations was used to train the prediction models. All the models
were trained on the training set by using the early stopping procedure in which
model training continues as long as the performance on the validation set improves
in order to avoid overfitting. The hyperparameters of all the prediction models
were tuned using a random search. More specifically, for each training cycle of
a model, a hyperparameter setting was determined by randomly sampling values
from the model’s predefined hyperparameter space. After a predefined number of
training cycles, the optimal hyperparameter setting was determined by obtaining
the model with the highest validation performance. For the logistic regression
model, the regularization method and strength as well as the number of training
iterations were optimized. The number and depth of trees as well as the the number
of samples required to split an internal node and to be at a leaf node were set as
hyperparameters for the random forest model. For the deep learning models, the
number of layers, the number of neurons in each layer, the activation function, the
dropout rate as well as the inclusion of batch normalization were all considered
as tunable parameters. Finally, for every prediction model, the inclusion of the
static data features, i.e. the parity and season of calving, as well as the balancing
scheme was considered as a hyperparameter as well. In particular, the data could be
upsampled or downsampled, the loss function could be weighted with respect to the
class proportions or no adjustment could be made to the data. An overview of all
the hyperparameters that were assessed for each of the different models is provided
in 4.6. In Fig. 4.4, a schematic overview of the methodology for each prediction
model is given.

1
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Data balancing

Prediction model  

Calving  
predictions  

Figure 4.4: Overview of methodology
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4.3.6 Model Evaluation

The performance of the prediction models was evaluated by five metrics that
are widely accepted as appropriate evaluation metrics for binary classification al-
gorithms, namely the AUC (Area Under ROC Curve), the Sensitivity (Se), the
Precision or Positive Predicted Value (PPV), the Specificity (Sp) and the Aver-
age Precision (AP). The Se equals the proportion of correctly classified positive
examples. The PPV measures how much positive examples were retrieved from
the positive predictions. The Sp calculates the proportion of negative examples
that were identified by the model. In contrast to the aforementioned evaluation
metrics, the AUC and AP are not dependent on a specific threshold, i.e. the cutoff
point above which a predicted probability is considered as a positive prediction
and a negative prediction otherwise. Hence, these metrics allow to compare how
well models are ordering the predictions, without considering any specific decision
threshold. The AUC can be interpreted as the probability that a random positive
observation gets a higher score than a random negative observation (Bradley, 1997).
An AUC score of 0.5 represents a model that does not perform any better than
random, while an AUC score of 1 is obtained by a perfect model. In case of imbal-
anced data, however, it has been shown that the AP is more informative than the
AUC when evaluating binary classification models (Saito and Rehmsmeier, 2015).
The AP is the area under the precision recall curve (PRC) and indicates how well
the model can correctly identify all the positive examples without predicting too
much negative examples as positive. A random classifier has an AP equal to the
proportion of positive examples while a perfect model has an AP equal to 1.

4.3.7 Model Selection

Each missing value imputation model comprised 5 convolutional layers, with 32,
64, 64, 128 and 128 filters respectively. In each layer, a filter size of 3 and a ReLU
activation function was applied. The output of the second and fourth layer was
downsampled by applying a stride of 2. The output of the last layer was flattened
and passed to an MLP with one hidden layer of size 100 and a ReLU activation
function. Each imputation model was evaluated in terms of the RMSE on the
validation set every 5000 training iterations with a batch size of 32. Every time
the validation RMSE decreased, the model’s weights were saved. Training was
terminated when the performance did not improve for 5 consecutive times. For each
of the predictive models, 50 random hyperparameter configurations were assessed.
After convergence on the training set, the AP of the machine learning models on
the validation set was calculated. Every deep learning model was evaluated on the
validation set in terms of the AP after 1 training epoch. Model weights were saved
when the AP on the validation set increased. Training was terminated when the
validation AP did not increase for 5 consecutive times. For each predictive model,
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the parameter configuration that rendered the highest validation performance was
retrained on the combination of the training and validation set and was evaluated
on the test set. The learning rate applied for the Adam optimization algorithm was
0.001 for both the missing value imputation as well as the deep learning predictive
models.

4.3.8 Programming Tools

All data processing and analyses were done in Python 3.9 (Python Software Founda-
tion, https://www.python.org/). The same add-on packages as described in Chapter
2 2.3.6 were used.

4.4 Results

4.4.1 Model Performance

The performance of the models in terms of the AP on the test set for each prediction
window is presented in Table 4.3. For the daily predictions, the deep learning
models clearly outperformed the machine learning models on the data with miss-
ing values. While the logistic regression and random forest model achieved an
AP of 0.32 and 0.65, the LSTM, CNN and C-LSTM obtained AP scores of 0.72,
0.75 and 0.73 respectively. The highest scores, however, were obtained on the
imputed data. While the performance of the CNN and C-LSTM increased by 3%
and 7% respectively, the AP of the LSTM increased by 12.5% to 0.79, resulting
in the best performance on the daily predictions. Likewise, the performance of
the LSTM and C-LSTM improved considerably when trained on the imputed data
for the smallest prediction window. More specifically, the LSTM’s performance
increased by 0.02 when trained on the imputed data. The C-LSTM on the contrary,
improved its performance from 0.19 to 0.29, which resulted in the highest score for
the 1h prediction interval. The added value of the imputations with respect to the
predictive performance is also visible for the other prediction intervals. The CNN
trained on the imputed data obtained the highest performance scores for the 3h
prediction window with an AP equal to 0.49, thereby outscoring the best performing
model trained on the missing data with 0.02. For the 6h prediction interval, the best
performance was obtained by the C-LSTM and random forest model trained on the
imputed data as well as the random forest model trained on the data with missing
values.

In contrast to the AP, the Se, Sp and PPV are dependent on the chosen threshold.
For each prediction interval, the values of these metrics are therefore shown for
different thresholds in Table 4.4 for the best performing model, i.e., the C-LSTM
model trained on the imputed data for the 6h and 1h prediction interval, the CNN
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model trained on the imputed data for the 12h and 3h prediction interval and the
LSTM model trained on the imputed data for the 24h prediction interval. As ex-
pected, the Se increases for lower thresholds, as more observations are classified as
positive. Yet, as more observations are predicted as being positive, the number of
false positives will increase as well, hence resulting in lower levels of PPV. For a
threshold equal to 0.8, the daily prediction model is able to detect 65% of calvings
that will occur in 24 hours with approximately 77% of the positive predictions being
correct. When the threshold is lowered to 0.3, almost 90% of all calving events
are identified but with a lower PPV being equal to 0.4. For the same threshold,
the model predicting a calving event within 1 hour is comparable to the model
predicting the moment of calving within 24 hours in terms of the Se. The PPV of
the 1h model, however, is 0.13 and, therefore, considerably lower than that of the
24h model.

Non-Imputed Imputed
Prediction win-
dow LR RF LSTM CNN C-LSTM LR RF LSTM CNN C-LSTM

24h 0.32 0.65 0.72 0.75 0.73 0.52 0.76 0.79 0.77 0.78
12h 0.89 0.89 0.89 0.90 0.88 0.86 0.89 0.90 0.90 0.89
6h 0.65 0.68 0.64 0.66 0.66 0.62 0.68 0.64 0.65 0.68
3h 0.41 0.46 0.41 0.47 0.44 0.41 0.46 0.44 0.49 0.44
1h 0.18 0.21 0.21 0.24 0.19 0.19 0.21 0.23 0.24 0.29

Table 4.3: Performance in terms of the AP of the models on imputed and non-imputed test
set for the different prediction windows. The imputations on the test data were made by the
imputation model

Furthermore, Table 4.5 shows the performance of the C-LSTM model for the
different imputation strategies in terms of the AP. Regarding the traditional impu-
tation methods, the spline interpolation renders the highest performance for the
24h and 12h prediction interval, with an AP equal to 0.36 and 0.86 respectively.
Imputations made by linear interpolation on the contrary, achieve the highest results
for the 6h and 1h interval, with AP scores equal to 0.59 and 0.11 respectively. Yet,
for every prediction window, using the imputations inferred by the deep learning
model clearly results in better performance with respect to predicting the moment
of calving than using the imputations made by the more traditional imputation
methods. In particular, for the 1h interval, the C-LSTM model trained on the model
imputations outperforms the C-LSTM model trained on the imputations made by
linear interpolations by 0.18. For the 24h interval, the C-LSTM model leveraging
the model imputations even outperforms the best performing model using a tradi-
tional imputation method by 0.42. Additionally, the performance of the models
trained on the data with missing values as well as the missing values imputed by
the imputation model is visualized in more detail in Fig. 4.5. More specifically,
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Prediction Window Threshold Se PPV Sp

24h 0.8 0.65 0.77 0.97
0.5 0.79 0.53 0.90
0.3 0.87 0.40 0.81
0.1 0.93 0.28 0.67

12h 0.8 0.57 0.89 0.79
0.5 0.89 0.81 0.39
0.3 0.98 0.77 0.15
0.1 1.0 0.75 0.01

6h 0.8 0.43 0.66 0.85
0.5 0.77 0.58 0.63
0.3 0.91 0.52 0.43
0.1 1.00 0.42 0.09

3h 0.8 0.12 0.67 0.99
0.5 0.57 0.49 0.85
0.3 0.80 0.37 0.65
0.1 0.95 0.26 0.32

1h 0.8 0.30 0.31 0.95
0.5 0.66 0.16 0.75
0.3 0.88 0.13 0.55
0.1 0.99 0.09 0.21

Table 4.4: Performance of the C-LSTM in terms of Se, Sp and PPV for different
thresholds

the AUC of the C-LSTM model trained on the missing and imputed data for the
smallest and largest prediction interval are compared for different subsets of test
observations comprising a minimum percentage of missing values. As expected,
the AUC of the models decreased when more missing values were present in the
observations. For observations with at least 20% of the sensor values missing, the
AUC of both models for the 1h prediction interval decreased by 0.05 compared to
the AUC obtained on observations with no missing values. For the 24h prediction
interval, the AUC of the model trained with missing data decreased by 0.17 while
the AUC of the model trained on the data with imputations only decreased by
0.13. Yet, while the performance of all the models steadily decreased for increasing
amounts of missing values, the models trained on the imputed data clearly out-
performed the models trained on data with missing values for observations with a
tolerable number of missing values. In particular, for sensor sequences with at least
30% of the values missing, the model leveraging the imputations scored an AUC of
0.73 and 0.76 on the 1h and 24h prediction interval respectively. In contrast, the
models that didn’t have access to the imputations obtained an AUC score of 0.68
for the same subset on both prediction intervals. However, when approximately
60% or more of the sensor values were missing, the AUC of the models trained
on the imputed data started to decrease rapidly, resulting in higher performance
scores obtained by the models trained on the missing data. This could be explained
by the fact that for these observations, the imputations only rely on a small subset
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of recorded values, hence resulting in less qualitative estimations. Yet, for more
reasonable amounts of missing data, imputations are far more precise and therefore
the resulting calving predictions as well.

Prediction Win-
dow

Mean
Imputation

Linear
Interpolation

Spline
Interpolation

Model
Imputation

24h 0.16 0.27 0.36 0.78
12h 0.81 0.82 0.86 0.89
6h 0.56 0.59 0.50 0.68
3h 0.31 0.29 0.27 0.44
1h 0.09 0.11 0.10 0.29

Table 4.5: Performance of the C-LSTM model for the different imputation techniques
in terms of the AP
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Figure 4.5: AUC of the C-LSTM models trained on the data with missing values as well as
imputations on subsets of test observations with increasing amounts of missing values.
Purple solid line = AUC of model trained on data with missing values, Green solid line =
AUC of model trained on data with imputed missing values.

An example of how the imputation model infers the missing values of two
different sensor sequences recorded on an hourly basis is visualized in Fig. 4.6. For
the sensor sequence measuring Inactivity, 10 of the 24 values were randomly set
to missing. By observing the remaining Inactivity values as well as the sequences
representing the 6 other behavioral activities, the imputation model is capable of
accurately approximating the true sensor values. For time step 6 for example, the
model correctly infers a strong decrease in Inactivity, before increasing back to a
local maximum. For time step 11 and 23, the model also correctly identifies the true
direction of the sensor activity, yet slightly underestimates the true increase and
decline of the sensor values. For the sequence representing Leg Activity behavior,
14 values were randomly set to missing. Again, the imputation model is able to
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correctly infer the direction of the sensor values for most of the time steps. From
time step 2 to 5, the model rightly predicts a slight increase followed by strong
decrease. Likewise, the model is able to detect an increase in sensor values for time
steps 7, 11, 18 and 23. For time step 21 however, the model assumes an increase in
Leg Activity behavior while a decrease in sensor activity was truly observed.
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Figure 4.6: Visualization of the imputation model’s predictions of missing sensor values for
two random sensor sequences of the test set. Blue solid line = true sensor sequence, Pink
dots = sensor values randomly set to missing, Green dots = observed sensor values, Orange
dashed line = predicted sensor values

Finally, an example of how the hourly calving models change their predicted
probabilities according to the time until calving is shown by Fig. 4.7. For one
animal, the probabilities are generated by the models by observing the sequence
of sliding windows of sensor data before calving. As the moment of calving
approaches, the predicted probabilities of the 4 models increase. For the model
trained to predict calving within 12 hours, the probabilities become considerably
larger than 0.5 when calving starts in 9 hours. The 6h model on the other hand, only
starts generating probabilities larger than 0.5 when the moment of parturition is in 6
hours or less. The predictions made by the 3h model start to increase rapidly when
calving approaches within 4 hours, while the 1h model only predicts probabilities
larger than 0.5 when calving starts within 2 hours.

4.5 Discussion

The results depicted in Table 4.3 clearly indicate that the deep learning models,
which are able to leverage the sequential patterns in the sensor data, perform bet-
ter than the more traditional machine learning models, which used the flattened
sensor data as input. Except for the 6h prediction interval, the highest AP was
always obtained by one of the deep learning algorithms, irrespective of the data
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Figure 4.7: The predicted probabilities of the 12h, 6h, 3h and 1h calving models for different
time periods until calving

preprocessing method. This indicates that the temporal patterns in the sequences of
sensor data contain valuable clues regarding the moment of calving. Traditional
machine learning models are not able to leverage sequential information as they do
not process the time series in a sequential fashion.

Furthermore, it is also clear from Table 4.3 that the models trained on the data
imputed by the imputation model predict calving more accurately than when the
data with missing values was used. For every prediction window, the best perform-
ing model trained on the data imputed by the deep learning model performed as
well or better than the best performing model trained on the missing data. For
predicting calving within 24 hours and 1 hour, the missing value imputations had
the largest impact, with an increase of 0.04 and 0.05 in terms of AP respectively.
Additionally, Table 4.5 shows how the predictions with respect to the moment of
calving were considerably more accurate for every prediction window by using
the imputations made by the deep learning model than by using the imputations
made by the more traditional imputation methods. Moreover, the results from
Table 4.3 and Table 4.5 indicate that imputation by the mean, linear interpolation or
spline interpolation even harm performance, as the C-LSTM model trained on the
non-imputed data obtains higher AP scores for every prediction window. This can
be attributed to the fact that entire gaps of missing values are more present in the
sequences than single missing data points, which in turn may be the result of sensors
not transmitting data for a certain period, rather than a single moment. For such
large gaps of missing data, the imputations made by the more traditional imputation
methods will likely be unrealistic. In particular, imputations generated by the mean
and linear interpolation will lie on a horizontal and linear line respectively, while
the imputations generated by spline interpolation will lie on a parabolic line. The
deep learning imputation model, however, is able to leverage all the information
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available in the data, including the observed values of other features, and is able to
generate more complex patterns for the gaps of missing data. The added value of the
imputations was also visualized by Fig. 4.5. In particular, it was demonstrated that
for observations with reasonable amounts of missing values, the models trained on
the imputed data perform consistently better than the models trained on the missing
data. For test observations with 1% to approximately 60% of missing values, the
1h as well as the 24h predictions were more accurate when the missing values were
imputed. However, for more missing values, the accuracy of the imputations starts
to decrease rapidly and hence results in even worse performance than using the
raw data as input. These results suggest that as long as no more than half of the
data is missing, using intelligent imputation methods can considerably increase the
predictive performance to predict the moment of calving.

In order to investigate the added value of using sequential deep learning models
for imputation as well as prediction in further detail, the results from this study are
compared with the results obtained by similar studies. In the study presented by
Rutten et al. (2017), a logistic regression model that used the relative differences
in sensor values to predict calving within 1 hour obtained a Se of 0.21 with a PPV
of 0.05. For approximately the same level of Precision, the Naive Bayes model
presented by Zehner et al. (2019) obtained a much higher Se of 0.82. In this study,
the C-LSTM trained on the imputed data was able to detect more positive calving
events at a higher precision. More specifically, for a threshold of 0.3, 88% of the
true calving events were detected with a PPV of 0.13, while for a threshold of
0.1, the model was able to detect 99% of positive cases with a PPV of 0.09. The
logistic regression model was also used by Rutten et al. (2017) to predict the start
of calving within 3 hours. For this prediction interval, they reported a Se and a PPV
of 0.42 and 0.09 respectively. In this study, a Se of 0.95 with a PPV equal to 0.26
was achieved by the CNN trained on the imputed data, given a threshold of 0.1.
A logistic regression model using the relative changes in sensor values was also
proposed by Fadul et al. (2017) to predict calving for a 3h interval. For multiparous
cows, they reported a Se of 0.85 in correspondence to a Sp of 0.74. In this research,
a similar Se of 0.8 was obtained for a slightly lower level of Sp equal to 0.65, given
a threshold of 0.3. Yet, the results presented by Fadul et al. (2017) were obtained on
the same 9 observations which were used to fit the model parameters and therefore
could be biased. For predicting the start of calving within 6 and 12 hours, a logistic
regression model was also used by Rutten et al. (2017) and Ouellet et al. (2016). For
the 6h predictions interval, Ouellet et al. (2016) reported a Se of 0.71 and a PPV of
0.17, while for the 12h interval, a Se and PPV of 0.7 and 0.3 were obtained. These
results, however, should be interpreted with caution as they were also obtained
on the same 33 calving events used to train the model. A better comparison can
therefore be made with the 6h and 12h models presented by Rutten et al. (2017), as
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they did use a separate test set to evaluate the predictive performance. For the 6h
prediction interval, the model proposed by Rutten et al. (2017) obtained a Se and
PPV of 0.49 and 0.11 respectively, while for a window of 12 hours, a Se of 0.51
and a PPV of 0.13 was reported. For a threshold of 0.8, the 6h model proposed in
this study achieved a similar level of Se of 0.43, but at a much higher PPV, i.e. 0.66.
Likewise, the CNN model trained on the imputed data was much more accurate in
predicting the start calving within 12 hours. In particular, 89% of the positive cases
could be detected at a predictive accuracy of 81% for a threshold of 0.5. Finally, the
model proposed in this study that predicted calving within 24 hours obtained a Se
of 0.65 with a PPV of 0.77 given a threshold of 0.8. The model proposed by Rutten
et al. (2017) obtained lower values for both the Se as well as PPV, namely a Se of
0.36 and a PPV of 0.6. Borchers et al. (2017) on the other hand, presented an MLP
that was able to detect every single positive calving event with a PPV of 0.4. Better
performance scores were even reported by Keceli et al. (2020) who used an LSTM
architecture on the same dataset. In particular, they reported a Se and PPV of 1.0.
However, while the results in this study are obtained on a test set comprising 115
calvings coming from 8 different herds, the results reported by by Borchers et al.
(2017) and Keceli et al. (2020) were obtained on only 10 calving events coming
from the same herd. Additionally, while in this research the results are obtained
on test observations containing missing values, observations with missing values
were removed from the analysis conducted by the two aforementioned studies. This
is also true for the frameworks proposed by Fadul et al. (2017) and Ouellet et al.
(2016). In practice, however, sensor sequences often contain missing values. The
prediction errors reported by these studies will therefore be underestimates of the
true errors obtained on new observations containing missing values. Finally, the
models presented by Borchers et al. (2017) and Keceli et al. (2020) are categorical
classification algorithms that predict the number of days until calving during the
two weeks preceding calving. In order to predict the number of days until calving,
a fixed window of 14 days of observed data was used as feature by Keceli et al.
(2020). As a result, the model can correctly predict the number of days until calving
by solely counting the number of available features, regardless of the values of these
features. For unseen calving events, however, the days until calving are unknown
and therefore also the number of features. As a result, it is much more difficult to
generalize these results towards other calving events than the results obtained by
the present study.

4.6 Conclusion

Dystocia is a major problem for the dairy cattle industry as it significantly affects the
animal welfare as well as the farm economics. Accurately predicting the moment
of calving is, therefore, a valuable tool for dairy farmers as it allows them to
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provide timely supervision. In this study, we propose a framework to predict the
moment of calving by using sensor data measuring behavioral activities such as
eating, ruminating, walking and lying. The present study shows that leveraging
the sequential patterns from the sensor data increases the performance of calving
prediction models. More specifically, we show how deep learning models are able
to accurately infer missing values by using all the behavioral activities observed
by the sensors. In addition to increasing the overall predictive performance, using
the missing value imputations also significantly improves the performance on
observations containing up to 60% of missing values. Additionally, we show how
using sequential deep learning algorithms are better able to predict the moment of
parturition than more traditional machine learning algorithms, which are not able to
exploit the sequential patterns hidden in the sensor data. In particular, the presented
models could detect 65% of the calvings within 24 hours with a precision of 77%,
while 57% of calvings occurring within 3 hours could be identified with a precision
equal to 49%. Hence, the framework proposed in this study can be used to enhance
calving predictions, and therefore facilitate timely supervision as well as improve
animal welfare.
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Appendix A. Hyperparameters

Predictive Model Hyperparameter Settings

Logistic Regression Number of iterations 1000, 2000, ..., 5000
Regularization method None, L1, L2, Elastic Net
Regularization strength 0.001, 0.01, 0.1, 0.2, 0.5, 1, 10, 100
Balancing method None, Downsample, Upsample, Weighted

Random Forest Number of trees 100, 200, ..., 1000
Maximum depth of a tree 10, 20, ..., 100
Minimum number of samples per split 2, 5, 10
Minimum number of samples per leave 1, 2, 4
Maximum features per split sqrt(number of features)
Use static features True, False
Balancing method None, Downsample, Upsample, Weighted

LSTM Number of LSTM layers 1, 2
Size of hidden state 50, 100, 200
Activation function ReLU, Leaky ReLU
Dropout Rate 0.0, 0.1, ..., 0.5
Use batch normalization True, False
Number of MLP layers 0, 1, 2
Size of MLP layers 50, 100
Use static features True, False
Balancing method None, Downsample, Upsample, Weighted

CNN Number of CNN layers 2, 4, 6, 8
Number of filters 16, 32, 64, 128
Size of filter 3
Downsample layer None, Stride, MaxPool
Stride or MaxPool size 2
Activation function ReLU, Leaky ReLU
Dropout Rate 0.0, 0.1, ..., 0.5
Use batch normalization True, False
Number of MLP layers 0, 1, 2
Size of MLP layers 50, 100
Use static features True, False
Balancing method None, Downsample, Upsample, Weighted

C-LSTM Number of CNN layers 1, 2
Number of filters 16, 32, 64
Size of filter 3
Downsample layer None, Stride, MaxPool
Stride or MaxPool size 2
Number of LSTM layers 1, 2
Size of hidden state 50, 100
Activation function ReLU, Leaky ReLU
Dropout Rate 0.0, 0.1, ..., 0.5
Use batch normalization True, False
Number of MLP layers 0, 1, 2
Size of MLP layers 50, 100
Use static features True, False
Balancing method None, Downsample, Upsample, Weighted

Table 4.6: Hyperparameters of the models
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bonneau, É. Evaluation of calving indicators measured by automated moni-
toring devices to predict the onset of calving in Holstein dairy cows. Jour-
nal of Dairy Science, 99(2):1539–1548, 2016. ISSN 0022-0302. doi: https:
//doi.org/10.3168/jds.2015-10057.

Pak, U., Kim, C., Ryu, U., Sok, K., and Pak, S. A hybrid model based on convo-
lutional neural networks and long short-term memory for ozone concentration
prediction. Air Quality, Atmosphere & Health, 11(8):883–895, 2018.

Raussi, S. Human–cattle interactions in group housing. Applied Animal Behaviour
Science, 80(3):245–262, 2003. ISSN 0168-1591. doi: https://doi.org/10.1016/
S0168-1591(02)00213-7. Behavior and welfare of cattle housed in large groups.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

https://www.sciencedirect.com/science/article/pii/S1751731117002026
https://www.sciencedirect.com/science/article/pii/S1751731117002026
https://www.mdpi.com/2076-2615/3/4/1036
https://www.mdpi.com/2076-2615/3/4/1036


REFERENCES 97

Rutten, C., Kamphuis, C., Hogeveen, H., Huijps, K., Nielen, M., and Steeneveld, W.
Sensor data on cow activity, rumination, and ear temperature improve prediction
of the start of calving in dairy cows. Computers and Electronics in Agriculture,
132:108–118, 2017. ISSN 0168-1699. doi: https://doi.org/10.1016/j.compag.
2016.11.009.

Saito, T. and Rehmsmeier, M. The precision-recall plot is more informative than
the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS
one, 10(3):e0118432, 2015.

Schirmann, K., Chapinal, N., Weary, D., Vickers, L., and von Keyserlingk, M. Short
communication: Rumination and feeding behavior before and after calving in
dairy cows. Journal of Dairy Science, 96(11):7088–7092, 2013. ISSN 0022-0302.
doi: https://doi.org/10.3168/jds.2013-7023.

Schuenemann, G., Nieto, I., Bas, S., Galvão, K., and Workman, J. Assessment of
calving progress and reference times for obstetric intervention during dystocia in
Holstein dairy cows. Journal of Dairy Science, 94(11):5494–5501, 2011. ISSN
0022-0302. doi: https://doi.org/10.3168/jds.2011-4436.

Schuenemann, G., Bas, S., Gordon, E., and Workman, J. Dairy calving management:
Description and assessment of a training program for dairy personnel. Journal of
Dairy Science, 96(4):2671–2680, 2013. ISSN 0022-0302. doi: https://doi.org/10.
3168/jds.2012-5976.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. Going deeper with convolutions. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1–9, 2015.
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5
Discussion and conclusion

5.1 Discussion

This dissertation discussed several techniques to improve current animal monitoring
systems in dairy cattle and make them suitable for practical applications. The
notion of a system that can effectively be used for practical applications is often an
underexposed topic in literature. According to Hogeveen et al. (2010), three criteria
must be fulfilled for a prediction model to be applied in practice for commercial
dairy farming: 1) a high performance, 2) a relevant prediction time window and 3)
a high degree of similarity between the research data and the real everyday data in
commercial farms. Since our goal was to develop monitoring systems suitable for
practical implementations, we discuss the frameworks proposed in this dissertation
with regard to every of these three criteria.

In Chapter 2, we present an autoencoder that infers all missing milk yields
along the lactation curve. To do this, the encoder compresses all available infor-
mation in a latent representation that comprises the most important traits of the
lactation curve. The decoder then uses this latent representation to generate the
entire milk yield curve. This approach allows the model to leverage all available in-
formation, regardless of the number and recording time of the observations. Results
show that the model presented in this chapter is capable of achieving state-of-the art
performance with respect to predicting individual as well as 305d milk yields for
different windows of available data. Moreover, by deliberately training the model
on data with varying sampling properties, the model’s Mean Absolute Percentage
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Error (MAPE) increased by a maximum of 2 percentage points when 60% of the
observed milk yields were set to missing for every possible forecast horizon. This
is in contrast to previously developed lactation models whose performance quickly
deteriorates when observations are lacking (Silvestre et al., 2006). All of the above
properties make it clear that the proposed approach fulfills the three predefined
criteria. First, the prediction window is relevant as the model is capable to infer
any missing milk yield along the lactation curve. Moreover, the model dynamically
changes its predictions when new information is observed. This enables farmers to
predict any milk yield at any given point in the lactation cycle. Second, there is a
high similarity between the research design and the reality as the model was explic-
itly trained to perform well under varying conditions of data completeness. Third,
results show that we have developed a robust lactation model that can compete with
the state-of-the-art in terms of individual as well as 305d milk yield prediction.

In Chapter 3, we propose a novel methodology to predict the milk yield curve
of a lactation cycle based on all the observed information from the preceding cycle.
In particular, we first extract the latent representation of the observed milk yield
curve using the encoder from Chapter 2. Next, we predict the low-dimensional
latent encoding from the lactation curve in the subsequent cycle. Finally, we use
the decoder from Chapter 2 to transform the latent encoding into the corresponding
curve. This approach has some interesting properties. First, it allows to forecast a
cow’s entire milk yield curve before the cow even has calved. This in turn allows
dairy farmers to monitor unexpected milk losses in early lactation, increase the
forecast horizon with respect to production and costs and facilitate timely culling
and breeding decisions. Second, the curve can be generated regardless of the
number of milk yields observed in the preceding cycle, as the encoder from Chapter
2 was explicitly trained to extract a curve’s most important traits by leveraging
all available information. Hence, as long as the latent representation is of high
enough quality, the model generates accurate predictions. As a result, these two
properties make that the proposed methodology meet the last two requirements,
i.e. relevant prediction window and correspondence between research design and
reality. Furthermore, it was shown that the model presented in this chapter obtained
a smaller prediction error for every milk yield in the predicted cycle compared to
the group’s average lactation curve. Moreover, it was shown that for the first 26
days of lactation, the predictions made by this model using data from the preceding
cycle are more accurate than those of a lactation model that uses data observed
in the predicted cycle. Therefore, we can conclude that with regards to the early
lactation, we have developed a model that, in addition to the last two criteria (i.e.
a relevant prediction window and a high similarity between research design and
reality) also meets the first criterion (i.e. a high performance).

In Chapter 4, we specifically designed a calving prediction framework to fulfill
the last two criteria (i.e. a relevant prediction window and a high similarity between
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research design and reality), as such frameworks have not been covered adequately
in previous literature. To meet the last criterion, we developed a deep learning
methodology to infer missing values in the sensor recordings of behavioral activities
by leveraging the observed sensor data. This approach ensured that the model could
still generate reliable calving alerts when facing several data quality issues (e.g.
defective sensors and faulty transmission of data). In fact, results showed that
this strategy outperformed more traditional imputation methods and significantly
improved calving detection for cows with sensor data containing up to 60% of
missing values. To fulfill the second criterion, we analyzed the ability of deep
learning algorithms to accurately predict the moment of calving within different
time frames. In particular, we investigated whether 14 days of sensor data could
be used to predict calving within 24h and whether 24 hours of sensor data could
be used to predict calving within 12h, 6h, 3h and 1h. This way, dairy farmers can
continuously obtain the likelihood a cow is about to calve within several time frames.
Moreover, we validated the performance of each of these models on a previously
unseen large sample of cows coming from different herds in terms of Average
Precision (AP) to analyze the framework’s generalizability. A random classifier
has an AP equal to the proportion of positive examples while a perfect model has
an AP equal to 1. For each of the prediction intervals, the models obtained an AP
considerably higher than the average proportion of positives. In particular, for the
24h, 12h, 6h, 3h and 1h prediction intervals, the AP scores were 0.79, 0.90, 0.68,
0.49 and 0.29 respectively, while the proportion of positives equalled 0.125, 0.26,
0.40, 0.20 and 0.07 respectively. Moreover, we found that for each of the predictive
time frames, our framework outperformed the only model previously developed that
could largely satisfy the three predefined criteria (Rutten et al., 2017). Therefore,
we believe that, especially for the larger prediction windows, we have developed an
accurate calving prediction model that can compete with current state-of-the-art
models and hence fulfills all three criteria.

5.1.1 Additional recommendations

Given the fact that the presented prediction models largely satisfy each of the three
predefined criteria, i.e. a high performance, a relevant prediction time window and
a high degree of similarity between the research data and the real everyday data
in commercial farms, we believe that this dissertation provides useful insights on
how dairy farmers can use their data to develop state-of-the-art monitoring systems
that are applicable in practice. Before actually implementing the frameworks,
however, dairy farmers should satisfy a minimal amount of requirements, which
are visualized by Figure 5.1. In particular, dairy farmers should record a minimum
amount of daily milk yields as well as health and reproduction events of their cows
to implement the lactation models from Chapter 2 and 3. Most modern dairy farms
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are equipped with milkmeters that automatically register milk yields with each
milking. Since the SAE from Chapter 2 was explicitly trained on data with variable
recording intervals, monthly test-day records can also be used, albeit with a potential
loss in prediction accuracy. The option to register health and reproduction related
events is included as standard in most HMS. Farms with no HMS can register these
events manually on their computers or mobile devices. The herd KPIs, animal KPIs
and average milk yield per parity that were used for the lactation models presented
in Chapter 2 and 3 were automatically calculated by the cloud-based dairy analysis
application (www.mmmooogle.com). These statistics can also be derived directly
from the produced milk yields and recorded health and reproduction events. In
addition, mmmooogle cleans the collected HMS data by removing duplicate milk
yields and correcting unrealistic event sequences. For example, a calving event that
occurs between a pregnancy and dry-off event is removed from the event sequence.
These cleaning procedures can also be done internally without relying on third
parties. For predicting the moment of calving, behavioral sensor data were used.
Therefore, another minimal requirement is that dairy farms should equip their cows
with devices measuring the same behavioral activities before the moment of calving.
In addition to the Nedap neck and leg accelerometers, many other devices exist that
measure the behavioral activities that were used in this study. For example, pressure
sensing devices, microphones and boluses have been used to measure eating and
ruminating behavior (Crociati et al., 2022). From the moment the dairy farms
are equipped with the necessary PLF technologies to record the required data, the
models can be deployed continuously while cows transition through their lactation
cycles, as is demonstrated by Figure 1.1. As the presented models were completely
developed and trained in TensorFlow, they can be deployed by TensorFlow Serving
(Olston et al., 2017). This is a flexible, language-neutral and high-performance
serving system for machine learning models, designed for production environments.

When a cow has been dried off and has been equipped with sensors to measure
its behavioral activities, the calving models can be applied continuously on incom-
ing batches of sensor data. On their mobile devices, dairy farmers can get a heatmap
for each cow that is about to calve similar to the heatmap presented in Figure 4.7.
These heatmaps visualize the predicted probabilities of each calving model at each
time step and indicate how likely it is that the moment of calving will occur within
each predictive window. Automatic alerts can be generated when the predicted
probability of one of the calving models exceeds a specific threshold. This can help
farmers to decide which cows to inspect for possible delivery assistance. Typically,
automated detection models are evaluated in terms of Sensitivity, Specificity and
Precision. Concretely, for a calving prediction model, a high Sensitivity means that
the model is capable of generating alerts for most of the true calving events. A high
Specificity means that the model is capable of not generating alerts for most of the
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milk yields events

animal KPIs herd KPIs

Lactation models Calving models

TensorFow Serving

milkmeter HMS
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Figure 5.1: Overview of minimal requirements to implement presented frameworks. Purple
= required PLF technologies, blue = required data

false calving events. Similarly, a high Precision means that little alerts that were
generated related to false calvings events. Therefore, the Specificity and Precision
provide more information on the reliability of a detection system and are extremely
important for the farmer’s trust in the prediction model. For example, when the Sen-
sitivity of the calving model is 90%, but the Precision is 50%, this means that almost
all calvings are detected successfully, but that 50% of the alerts are in fact erroneous.
Inspecting cows that are not about to calve can be a large waste of time and hence
be very costly. Hence, when the system generates too much false alerts, the farmer
will lose its trust in the system and stop using it. According to the ISO 20966:2007
guideline, the Sensitivity and Specificity of automated detection systems should
be as high as 80% and 99%. In practice, however, these performance scores are
seldom achieved (Rutten et al., 2013). These performance scores were neither
obtained by the calving models presented in this dissertation. In particular, for a
Sensitivity of approximately 80%, the 24h model, 6h model and 3h model achieved
a Specificity of 90%, 63% and 65% respectively. Nevertheless, as we provided
calving models operating on different predictive time windows, farmers can choose
to apply a customized rule system for each calving model, such that the framework
still facilitates calving management. For example, farmers can decide to apply high
thresholds for the larger prediction windows, while applying lower thresholds for
the smaller prediction windows. This strategy will only generate alerts when cows
are very likely to calve in the larger windows, while for the smaller windows alerts
will be generated more quickly to avoid False Negatives. Also, for the cows that
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have been identified as being very likely to calve in the larger prediction windows,
the heatmap presented in Figure 4.7 can be used to monitor the probabilities of the
models of the smaller prediction windows. An example of how this strategy can be
used in practice is given by Figure 5.2. Hogeveen et al. (2017) found that using aFRAMEWORK IN PRACTICE

1

Time

12h alert

6h alert

3h alert
1h alert

Figure 5.2: Example of calving models in practice. At every time step, each calving model
generates predicted probabilities given the observed behavioral data. Blue = low predicted
probability, red = high predicted probability

calving alarm system based on accelerometer data presented by Rutten et al. (2017)
yielded an average net return of e5.71 per cow and per calving for the 1h model.
Crociati et al. (2020) on the other hand, found that using a calving alert system
based on an intravaginal device measuring light and temperature yields an average
net return of e63.5 per cow per calving. The net returns of the two aforementioned
calving systems were estimated by taking into account the costs and revenues that
relate to the implementation and usage of a calving alert systems. The revenues
corresponded to a decreased rate of stillbirths, a decreased number of days open
and an increased amount of milk yield. The cost mainly included the installment
costs as well as the cost of the central unit and sensor devices. The sensors used
in this dissertation were accelerometers measuring behavioral activities and were
very similar to the sensors used in Rutten et al. (2017). In Section 4.5 of Chapter 4,
we showed that the calving models presented in this dissertation outperformed the
model developed by Rutten et al. (2017) in terms of Sensitivity and Precision for
every prediction window. The calving alert system used by Crociati et al. (2020)
is based on an intravaginal sensor measuring light and temperature and generates
an alert when it is expelled from the vagina at the beginning of stage 2 of labor.
The cost of this system was estimated at e10 per calving and is slightly lower than
the cost of the sensor system used in this dissertation, which is approximately e50
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per cow and hence ranges between e12,5 and e16,67 per calving, assuming that a
cow gives birth to 3 to 4 calves during its lifespan. The calving system evaluated
in Crociati et al. (2020) achieved a Sensitivity of 86%, yet no information on the
Specificity or Precision of the alarm system was provided. In case that the calving
alarm system obtains similar levels of Precision and Specificity for a Sensitivity of
86% as the calving model presented in this dissertation, we can expect that using
the calving models presented in this dissertation will yield a net revenue that ranges
between e5.71 and e63.5. Future research should determine the net value of this
system by performing a cost-profit simulation similar to that conducted by Crociati
et al. (2020); Hogeveen et al. (2017)

Once a cow has delivered its calf and begins its next lactation cycle, the SLMYP
can be deployed to forecast the entire milk yield curve that the cow is expected
to produce. From 26 day onwards in the lactation cycle, the daily milk yield
predictions are generated by the SAE, as Figure 3.6 showed that after 26 days,
the SAE starts to generate more accurate predictions than the SLMYP. From that
moment, the expected lactation curve is continuously updated as soon as new
information on milk yields or health and reproduction events becomes available.
Early in the lactation cycle, the expected lactation curve can be used to support
breeding, culling and feeding decisions. Additionally, the milk yield predictions
generated by the SLMYP and the SAE can be compared with the true yields on a
daily basis to support animal monitoring. The daily milk losses can be displayed
on mobile devices, and farmers can get alerts in case of considerable milk losses
as these can indicate health-related problems. This is demonstrated by Figure 5.3.
From the moment the farmer receives an alert, the cow can be submitted for
inspection. As with the calving models, this detection system should also be
evaluated in terms of Sensitivity and Precision. In particular, how many cows with
health-related problems are detected by the monitoring system, and how many
alerts were generated for cows with no problems. In addition to overestimates of
the expected milk yields predicted by the lactation models, low Precision scores
may also be caused by other factors. First, the alert can be generated too quickly if
a too low boundary is applied for the milk loss that triggers the alarm. A higher
boundary for the milk loss or longer periods with consecutive observed milk losses
should then be considered to trigger the alerts. Second, due to varying milking
intervals, daily milk yields can fluctuate much, which may trigger false alerts. In
that case, it is advisable to standardize the daily milk yields with respect to the
milking intervals (Adriaens et al., 2018). The net value of the lactation models
can be estimated by using a similar procedure as used in Crociati et al. (2020);
Hogeveen et al. (2017). This includes the estimation of the costs and revenues
that correspond to using the lactation models. In contrast to the calving models,
using the lactation models does not require additional investments in specialized
equipment. Milk yields are by default recorded in almost every dairy farm, either by
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LACTATION MODEL IN PRACTICE: EXAMPLE

1

1

Time

alert

SLMY predictions SAE predictions SAE predictions

day 24 day 60 day 120
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Figure 5.3: Example of lactation models in practice. Blue line = true milk yield, orange line
= predicted milk yield

milkmeters or by test-day records. The health and reproduction events are recorded
manually on a computer. Hence, as the installment costs are negligible, the total
cost related to using the lactation models mainly exist out of the amount of time
the farmer spend on investigating false detected cows, which is estimated to be
e22.05 per hour for Belgian dairy farmers (emb, 2017). The revenues of using
the lactation model mainly relate to the decreased rate of disease due to timely
detection and inspection. This results in increased milk production and decreased
veterinary costs. Other revenues of using the lactation model correspond to more
selective breeding and culling and should also be taken into account. Hence, only
when we can foresee the actual revenues generated by the lactation models, we will
be able to look at the cost-efficiency of using the lactation models in practice. This
will require empirical experiments in which the revenues of the lactation model
generated for an experimental group is compared with a control group which were
not submitted to the detection system.

In the short term, the models should be retrained on a regular basis to safeguard
their performance. Due to TensorFlow Serving’s version control management, Ten-
sorFlow models that are being deployed in production can be retrained continuously.
The training of the lactation models can be continued when completed lactation
cycles are being observed, while incremental training of the calving models can
be conducted on new windows of observed sensor data. Furthermore, the models
should be retrained regularly to cope with potential data drift. For example, it has
been showed that milk production has been steadily increasing over the last years
due to selective breeding, increased milking frequency, improved monitoring, better
feeding and improved reproductive performance (Bórawski et al., 2020). In the
long term, the models can be adapted when better processing techniques, new data
and novel algorithms become available. In Section 5.3, we discuss some of these
future avenues for research.
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5.2 Conclusion and implications

In this dissertation, we set out to enhance animal monitoring systems in the dairy
industry and make them more suitable for practical applications. Our goal was
to provide evidence that advanced deep learning algorithms could improve the
predictive performance of current monitoring systems and could cope with the
real everyday data conditions in commercial farms. To do so, we developed and
assessed three different monitoring systems based on data coming from various
commercial dairy farms: a framework to predict the milk yield in the current
lactation cycle, a framework to predict the moment of calving after the current
lactation cycle and a framework to predict the milk yield in the subsequent lactation
cycle. Combining these frameworks allows dairy farmers to better manage the
welfare of their animals during the transition period, i.e. the period between late
pregnancy and early lactation. This period is a critical moment for dairy cows, as
most health disorders occur during this time (Drackley, 1999). Here, we summarize
each chapter according to their methodological and theoretical contributions.

Chapter 2 focuses on inferring milk yields in a certain lactation cycle. This
study evaluates whether a latent representation of all information observed in the
lactation cycle can be used to accurately generate the entire milk yield curve. At the
theoretical sight, our findings extend the current theories on the effect of mastitis
(Fernandes et al., 2021), disease (Bareille et al., 2003), parity (Macciotta et al.,
2011) and herd management (Jeretina et al., 2015) on the milk production. Fur-
thermore, we find evidence that most important aspects of a lactation curve such
as peak time, peak yield and persistence can be used to accurately summarize
the entire lactation curve, which is in correspondence with the existing theory on
lactation curve modeling (Bouallegue and M’Hamdi, 2020). From a methodological
perspective, we contribute to the literature by presenting a deep learning model
that can automatically derive the lactation curve parameters by using all available
information in a lactation cycle. This approach allows missing milk yields to be
inferred along the entire lactation curve, regardless of the number of observations
and the recording interval between the different observations. Furthermore, the
presented methodology dynamically updates its predictions when new observations
are observed. This is in contrast with previous individual curve fitting models that
generate fixed predictions once the required set of data points are observed. In addi-
tion, this study is the first to show how the sequence of the health and reproduction
events can be included to improve milk yield predictions. This approach makes it
possible to update the milk yield predictions once a critical event such as mastitis is
observed. Our findings show that the presented framework achieves state-of-the-art
results in terms of individual and 305d milk yield predictions.

Chapter 3 investigates whether a lactation curve can be entirely predicted by
using information observed in the preceding cycle. On the methodological side,
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this study is the first to conduct such an analysis in terms of algorithms, variables
as well as predictions. Our methodological insights are that an entire lactation
curve can be generated non-sequentially by predicting and decoding its parameters
using deep learning algorithms and that the lactation curve is estimated by a higher
accuracy when parity, herd, health and reproduction information is used in addition
to the milk yield observed in the preceding cycle. Moreover, we show that by
using this methodology, the milk yield before the 26th day of lactation can be
predicted more accurately than by using current lactation models. Therefore, this
methodology contributes to the literature by enhancing animal monitoring in early
lactation, which is a critical stage in the cow’s life (Caixeta and Omontese, 2021).
On the theoretical side, we find evidence that a cow’s historical milk production is
related to its future production, which is in line with results of previous studies (Ali
and Schaeffer, 1987). Furthermore, we find that health events such as mastitis and
disease are correlated with future milk production.

Chapter 4 assesses a deep learning model that predicts the moment of calving.
The goal in this study is to determine whether sensor data on behavioral activities
such as eating, ruminating, lying, walking and standing time can be used to predict
the moment of calving within 24h, 12h, 6h, 3h and 1h. From a methodological per-
spective, this study contributes to the literature by using a deep learning framework
to impute the missing values in the sensor data. The study finds that missing ob-
servations of a certain behavioral activity can be accurately imputed by leveraging
the observed values of all the behavioral activities. Moreover, the study shows that
this approach yields better predictions than more traditional imputation schemes
such as mean imputation, linear and spline interpolation. Additionally, we find that
that deep learning architectures specifically designed to process sequential data
outperform machine learning models used in previous studies. From a theoretical
side, our findings extend current research on calving prediction (Borchers et al.,
2017; Fadul et al., 2017; Rutten et al., 2017; Zehner et al., 2019) in that behavioral
changes around the time of calving may provide clues to detect when cows are
about to calve.

5.3 Limitations and future research

5.3.1 Data limitations

A first limitation concerning the data used in this dissertation is that some input data
were manually recorded by the dairy farmers and therefore are prone to human error.
In Chapter 2 and 3 the health and reproduction events such as mastitis, insemination,
pregnancy and disease were entered manually by the farmers on wearable devices
such as tablets or smartphones. Hence, we are aware that it is very likely that
some events that took place were not recorded and that some events that did not



5.3. LIMITATIONS AND FUTURE RESEARCH 109

took place were recorded, though we estimate the probability of the latter case low
since recording an event requires a manual action on the device. An interesting
avenue for future research could, therefore, be to automatically register these events.
Several authors have, for example, suggested many automated techniques to detect
mastitis by using automated milking systems data (Khatun et al., 2018), infrared
thermography data (Machado et al., 2021) or sensor data (Post et al., 2020). Another
limitation in this regard is that the moment of calving was manually registered
by the farmers in Chapter 4 and corresponded to the timestamp of the completed
birth of the calve. The data, however, did not include which calvings were assisted.
Therefore, it is likely that the timestamp of some of the calvings are underestimates
of the true expected timestamps as delivery assistance speeds up the process of
parturition. Together with the limited data on calvings with an exact timestamp,
this could explain the lower performance of the models predicting calving within
the shorter time frames. Furthermore, we were limited to predict the moment of
parturition visually observed by the farmer and could not discriminate between the
different stages of calving. This could be valuable as larger farms would benefit
more from receiving alerts during the prodromal stage of labor (stage 1), while
receiving alerts at the beginning of labor (stage 2) would be preferred by smaller
farms (Crociati et al., 2022). Again, an interesting solution here could be to rely on
automated approaches to register the different stages of parturition such as video
cameras (Fadul et al., 2017) or pressure sensing devices (Scheurwater et al., 2021).

A second limitation is that we did not use the complete set of features that
relate to milk production and calving. In Chapter 2 and 3, we exclusively used
information on milk production, herd statistics, parity and health and reproduction
events to predict milk yield. With regard to the health and reproduction events, we
were limited by the set of events that were provided by the analytical cloud platform
to the dairy farmers. Yet, other health related events such as lameness and infectious
diseases also have an impact on the future milk production (Green et al., 2002;
Statham et al., 2015). Moreover, it is known that environmental factors such as
weather, climate and geography, feed intake and management practices also affect
milk production (Collier et al., 2017; Rekik and Gara, 2004). For Chapter 4 on
the other hand, we focused on using behavioral data measured by pedometers and
accelerometers to predict the moment of calving. Yet, many alternative devices exist
that measure other parameters that correlate with calving. For example, research
found that vaginal temperature (Ouellet et al., 2016), tail base temperature (Cooper-
Prado et al., 2011) and tail movements (Giaretta et al., 2021) tend to change around
the moment of calving. Therefore, we suggest future studies to investigate the
impact of the inclusion of some of these proposed features on the results reported
in this dissertation.

A third limitation is that milking intervals were not taken into account in Chapter
2 and 3. The daily milk yield was equal to the accumulation of the yields of all the
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milking sessions during that day. Variable milking intervals, however, can introduce
some variability in the data. Therefore, future research could normalize the daily
milk yields according the milking intervals in order to reduce the variability of the
daily yields. This approach has already been applied in previous research (Adriaens
et al., 2018).

5.3.2 Algorithmic limitations

A first limitation related to the algorithmic choices made in this dissertation is
that we did not asses the entire range of available deep learning architectures
for our frameworks. In Chapter 2 and 3, we opted for Convolutional Neural
Networks (CNN) to process the milk yield sequences as research has shown that
these types of architectures can be of great value for time series analysis (Zhao
et al., 2017). Moreover, in contrast to Long Short-Term Memory (LSTM) models,
CNNs process the data in parallel, which can significantly decrease training and
testing time. This model architecture was therefore also chosen in Chapter 4 to
impute the missing values in the sensor data. However, as stated by the no free
lunch theorem, there exists no single best algorithm, as the error averaged over
all tasks is the same for any solution method (Wolpert, 1996). Hence, we suggest
future research to benchmark different deep learning architectures such as CNNs,
LSTMs, GRUs, CNN-LSTMS and Bi-LSTMS with respect to their performance
on the different tasks tackled in this dissertation. Moreover, future research could
asses the performance of transformers, which were originally developed for Natural
Language Processing (NLP) tasks, but have recently also been used for time series
forecasting and classification problems (Liu et al., 2021; Zerveas et al., 2021).

A second limitation is that we did not assess all the possible hyperparameter
configurations for the predictive models. In Chapter 2, 3 and 4, we decided to fix the
batch size and the optimization algorithm for the training process of the models. We
also limited the possible number of layers and neurons per layer for all the models.
Moreover, we did not explore the entire range of possible values for parameters
such as kernel size, dropout, leaky ReLu and learning rate. In addition, we did
not implement grid search as this would waste enormous amounts of computation
(Goodfellow et al., 2016). Therefore, we opted for a Bayesian optimization strategy
in Chapter 2 and 3, while a random search was applied in Chapter 4. It would be
interesting to see whether the performance of the models would further increase by
extending the hyperparameter tuning process.

5.3.3 Analytical limitations

A first limitation of the presented studies is that we did not use statistical tests
to compare different models. We mainly drew conclusions on feature and model
selection based on the predictive performance of the features and models on the
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test set. Performing a significance test requires the distribution of each of the
models’ performance score. One common way to obtain this distribution is by
using cross-validation, as in this procedure a model is evaluated on multiple test
samples. Training deep learning models, however, is computationally expensive.
Hence, using cross-validation for deep learning models often becomes practically
infeasible, as the computation time exponentially grows with the number of folds
(Li et al., 2020). Therefore, a simpler strategy that involves one training, validation
and test set is often preferred when training deep learning models. This validation
procedure, however, only results in one performance score on the test set and,
therefore, does not allow to draw statistical conclusions. A perspective for future
research is to evaluate the trained models on different bootstraps drawn from
the test set to obtain a distribution of the evaluation metric. The downside of
this approach, however, is the potential presence of duplicates in and across the
different test samples. Another approach would be to estimate the mean and
standard error of the prediction errors, though this approach requires that the errors
are normally distributed (Goodfellow et al., 2016). Another interesting avenue
would be to implement Bayesian deep learning models, as this approach defines a
posterior distribution on the model’s parameters, which in turn results in a predictive
distribution. These models, however, are significantly more complex than standard
neural networks which makes them hard to implement in practice. Nevertheless,
by using one of these approaches, future research could extend the findings of
this dissertation by statistically determining which modeling techniques are most
suited for milk and calving prediction. Moreover, by using significance tests, future
research could establish which features significantly contribute to the model’s
performance.

A second limitation is that we didn’t assess the direction of the relationship
between the independent features and the labels. Deep learning models are black
box models, providing almost no information on how the features affect the pre-
dictions. Interpretable modeling techniques, such as Shapley values and Partial
Dependence Plots allow to infer the marginal effect of a feature on the outcome.
However, we didn’t implement Shapley values or Partial Dependence Plots in
this dissertation. Again, this limitation is mainly due to the computational costs
associated with these techniques. Inferring the marginal effect of a feature on
the outcome generally requires the calculation of the predictions for all possible
feature combinations. Therefore, the computation time increases exponentially
with the number of features (Jia et al., 2019). Moreover, as deep learning models
often comprise more than millions of parameters, generating predictions for large
datasets also requires some computational effort. Also, at the time of writing this
dissertation, no practical implementations of statistical packages to calculate these
Shapley values or Partial Dependence Plots were available for deep learning models
trained in Tensorflow. Therefore, in Chapter 2 and 3, we opted for calculating the
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Variable Importance scores. This approach is a lot less computationally expensive,
as calculating these scores does not require the need to compare the contribution of
each feature to the entire feature space. The downside of this technique is that it
only reports the ranking of each feature based on their contributions to the predictive
accuracy (Livingston, 2005). As a result, in Chapter 2 and 3, we were limited by
reporting which features were most important with regard to milk prediction. To
improve the interpretability of the prediction models in Chapter 2 and 3, future
research could include Shapley values for the input features. This could provide
valuable information to farmers on how exactly different herd statistics, animal
KPI’s and health events affect the milk production, which in turn could lead to
more effective herd management. In contrast to Chapter 2 and 3, we did not use
any interpretable modeling technique in Chapter 4. The reason is that in this study
we apply deep learning models on multivariate timeseries data, which makes calcu-
lating the Variable Importance scores particularly hard as the features are temporal
sequences. Moreover, the computational effort related to calculating Shapley values
would now not only depend on the number of features, but also on the sequence
length. Nevertheless, a perspective for future research would be to provide some
interpretable insights into the data of this study by implementing techniques such
as those proposed by Guo et al. (2019).

5.4 Final note
Moving towards a more sustainable agriculture is becoming quintessential in today’s
world as it is characterized by an increasing population growth, global warming
and an immense use of natural resources. PLF technologies have been proposed to
catalyze this transition as it allows to vigorously monitor every aspect of the food
chain. Yet, as these technologies rapidly advance, the data collected on dairy farms
becomes increasingly more complex. This dissertation bridges the gap between
novel research and practical applications of animal monitoring systems based on
complex PLF data. The study provides the dairy industry with new insights on how
to develop accurate monitoring systems in their complex data landscape. More
specifically, we uncovered how deep learning algorithms can be applied to build
milk prediction and calving prediction systems suitable for practical applications.
We suggest future research to extend these findings by applying the proposed
frameworks in real-life dairy farms and validate their value in practice.
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